
PCC 587 Project 1: Write-up due October 22, 2009  
Energy Balance Climate Model  
 
This handout describes the first project, and hopefully explains enough to make it 
work for everyone!  If you have questions you think are of general interest, post 
them on the class message board. If you are having more specific problems, 
write directly to Dargan.  
 
 We’ll be working with a simple one-dimensional climate model that 
calculates temperature as a function of latitude. The model uses the one-
dimensional steady state energy balance equation, and assumes that the energy 
transport by the atmosphere and ocean acts diffusively (energy flux proportional 
to temperature gradient):  
 

 
 
Throughout, x is defined as the sine of latitude, which is a convenient variable for 
energy balance calculations on the surface of a sphere (it succinctly takes into 
account the fact that latitude circles become smaller near the pole.  sin(lat) is the 
fractional area equatorward of that latitude).  The model plots the output fields as 
a function of degrees latitude.   
 
 In the above equation, solar radiation (and the effect of albedo to reflect 
away solar radiation) is on the left-hand side of the equation, and outgoing 
longwave radiation (parameterized as a linear function of temperature) and 
diffusive energy transport are on the right-hand side.  The standard set of 
parameters and functions for the model are the following:  
 

 (global average shortwave radiation at the top of the atmosphere) 
 (outgoing longwave radiation at 0 Celsius) 

 (increase in outgoing longwave radiation per degree 
temperature increase) 

 (diffusivity) 

 (latitudinal form of solar radiation.  The part in 
parentheses is the 2nd Legendre polynomial, a polynomial that integrates to zero over the 
sphere) 

  
 (if temperatures get sufficiently 

below freezing, we assume ice coverage and increase the albedo) 
  
You will be asked to vary these default parameter values in the project exercises.  



 
We encourage you to work together with your group on the project assignments, 
but to turn in individual responses to the questions. We also encourage 
thoughtful, thorough and succinct answers in your writeups (several sentences or 
a short paragraph should be adequate for discussing each question).  
 
Logistics  
Where and how to get onto computers   
 If you have access to Matlab and just need the EBM code, you can 
download it from the course web’s Projects page.  
 The computer lab is in the Atmospheric Science Geophysics (ATG) Building 
on the 6th floor (room 623). A class account has been set up with the username 
pcc587. To log in, you will need this username as well as the account password, 
which will be revealed in class. Open a terminal window by clicking the terminal 
icon on the top left of the screen. (You can also use ssh to connect to the 
account remotely: ssh –Y pcc587@ olympus.atmos.washington.edu should work) 
 
To set yourself up to run the energy balance model, follow these simple steps:  
 

1. Make yourself a directory off the account’s home directory.  
  mkdir yourdirectoryname  

To check that you have successfully completed this task, type the list 
command (that first letter is an L):  

  ls 
You should see a listing of everything in the home directory, including your 
newly created directory.  

2. Now copy the necessary files into your directory:  
  cp matlab_files/∗ yourdirectoryname/  

3. Enter your directory:  
  cd yourdirectoryname/  

4. Start Matlab:  
  matlab -nojvm  

5. At the Matlab prompt, launch the graphical user interface (GUI) for the 
energy balance model:  

  ebm  
This will bring up the GUI for the EBM. The assigment can be done without 
touching the model code at all.  

 

Using the GUI  
1. The model parameters are given in separate boxes in the GUI. You may 

need to resize this window to see all the available options. The values may 
be changed by editing the numbers in the respective boxes. Q/Q0 is the 
ratio of the solar constant to the current one (i.e. Q0 = 338.5 W/m2 ).  

2. The model is run by clicking on the Run EBM box. This causes the model 



to be integrated to equilibrium for the chosen set of parameters. When 
complete, Matlab will bring up a separate figure window showing three 
plots: a) temperature, b) poleward heat flux in petawatts (1015 W), and c) 
the three terms in the energy balance equation (shortwave, longwave, and 
heat flux convergence). You can move the graph legends around by 
clicking and dragging, and you can resize the figure window itself. Each 
time you run the EBM, a new figure window will be produced. You can 
drag them around your screen in order to compare the results of different 
simulations.  

3. At any time you can revert to the standard parameter set by clicking on the 
Use Defaults button.  

4. Use the zoom in button on the plot windows to read the exact values of 
fluxes, temperatures, etc.  Double click the plot with the zoom tool to snap 
the plot back to its original axes.   

5. Graphs can be printed out on the lab printers in Atmospheric Sciences by 
clicking on the tiny thing that resembles a printer in the figure window.  

6. The GUI can get mixed up sometimes. If it does behave strangely ever, 
the best course of action may be to close all the graphics windows (type 
close all in the matlab window), wipe out everything (clear all), and start 
again (ebm).  

7. If the model integration does not converge (reach equilibrium), matlab will 
produce a warning message and tell you how far out of equilibrium the 
worst grid point is.  This can especially occur if you try too large values for 
diffusivity (the numerical routine can’t handle this).  Just try different 
parameter values if this happens.   

 

Exercise 0  
Describe (briefly) the terms and variables in the equation above. What is the 
physical interpretation of each?  
 

Exercise 1: Varying D  
1. Run the model with the standard parameter set. Note the maximum poleward 
heat flux, the mean global temperature (T ), and the pole-to-equator temperature 
difference (∆Tp−e ). Compare with values for the current climate on the slides 
shown in class.  (matlab hint: you can use the magnifying glass tool in the plots 
to zoom in to particular parts of the plot to get exact values.  Double-click on the 
plot with this tool to get back to the original axes.) 
 
2. What happens when there is no meridional heat transport (D = 0)? Estimate T 
and ∆Tp−e , and briefly describe the changes to the climate.  
 
3. Try values of D = 0.22 W m−2 ◦C−1 and D = 0.88 W m−2 ◦C−1 . Are the changes to 
the climate consistent with your expectations? For example, note changes to T 



and ∆Tp−e . Compare the maximum poleward heat flux in these integrations with 
that using D = 0.44 W m−2 ◦C−1. Explain why the changes to the heat flux are not 
simply proportional to the changes in D.  
 
4. Use the model to estimate how the model will behave in the limit of an infinite 
D value. (Note: The model will not behave if you make D too big: a value of 8 
should suffice.) Speculate on what would happen to the pole-to-equator 
temperature difference in the limit of an infinite D value. What is the maximum 
heat flux at a D value of 10? Do you think this value would increase significantly 
in the limit of an infinite D value? (Hint: note where the ice edge is in this run, and 
look at the shape of the outgoing long wave radiation curve as a function of 
latitude)  
Extra Credit: Verify the upper limit of the meridional heat flux analytically using a 
spatially invariant albedo of .3 (or describe how you would calculate this value).  
 
5. Fossilized remains of crocodiles dating back to the Eocene (53-37 million 
years ago) have been found on Ellesmere Island (latitude is now 80N). Assuming 
crocodiles can survive when the mean annual temperature is 10 ◦C and that 
Ellesmere has not shifted much from its present location (which is true), find the 
rough value of D necessary for the crocodiles to have survived. What is the 
poleward heat flux required for this? Make a wild guess about what might change 
D in this way (Don’t worry— no one else knows either).  
 

Exercise 2: Varying Q  
The sun’s luminosity is not constant in time. It has been gradually increasing. 
Models of solar evolution suggest that the sun’s intensity (i.e. Q) has increased 
by roughly 10% over the last 109 years. Assume that this trend is linear and will 
continue. Start with the standard initial temperature profile for each part of this 
exercise.  
 
1. Find the increase in the value of Q (to within 1 W m−2) required to eliminate ice 
from the earth (assume ice exists when the temperature is below -10 ◦C). How 
long would it take before there is no ice left (assume nothing else changes)?  
 
2. Find the decrease in Q (to within 1 W m−2 ) required to cause complete 
glaciation, and hence show that the model would predict a snowball earth prior to 
about 1.0 ×109 years ago. Describe the changes in climate state between 
snowball climates and climates just warm enough to break out of the snowball.   
 
Exercise 3: No albedo feedback  
This exercise is designed to illustrate the different climate sensitivities with and 
without albedo feedback. Use the standard parameter set for this exercise, 
except for the albedo parameterization.  



 
1. The modern ice line is at about 72◦ N (or x = 0.95). Click on the no ice-albedo 
feedback button on the graphical user interface to fix the ice line at this value 
(i.e., when “no albedo feedback” is selected, poleward of 72 always has an 
albedo of 0.6, and equatorward of this always has an albedo of 0.3, regardless of 
the temperatures). Fixing the albedo in this way turns off the feedback between 
the temperature and the albedo. Show that the model is now much less sensitive 
to changes in Q. To do this, find the values of Q required for complete 
glaciation/deglaciation as in exercise 3, assuming that −10◦ C is still the 
temperature at which ice forms.  
2. Is the global mean temperature sensitive to the value of D? Answer this for the 
“no albedo feedback” case as well as the default case with ice-albedo feedback.  
Why?   
 
Exercise 4: Sensitivity to initial conditions   
The above exercises have all started off with warm initial conditions for the 
model. However the model has multiple equilibrium solutions for some range of 
Q. To show this, begin with the default model. Map out the variations in the ice-
line as Q varies over the range 290 W m−2  to 420 W m−2. Now instead start off 
with a cold initial temperature profile by clicking on the cold start button. Map out 
the ice line variations over the same range. This will show the hysteresis loop in 
the climate system and is a measure of how difficult it is to get out of a 
completely glaciated state.  
 This exercise illustrates the faint young sun paradox. Because the sun is 
known to have been weaker in the past, the earth should have had cold “initial 
conditions” then. Yet snowball earth conditions are thought to have been rare and 
discontinuous.  
 
 
 
Optional Exercises (for extra credit)  
These are some other ideas to explore with the simple EBM. Try one (or more) of 
them if you’d like to earn some extra credit. A detailed investigation is not 
required, but we hope that you have some fun just playing around with the model. 
If any other ideas occur to you, feel free to explore those instead and write those 
up for extra credit too.  
 
Varying A and B  
1. Alternative sets of longwave parameters have sometimes been used. For 
example try implementing values of A = 211.2 W m−2  and B = 1.55 W m−2 ◦C−1 in 
the model (holding everything else at the standard values). Describe briefly how 
the resulting climate is different from that using the standard parameters.  
2. For this choice of A and B, and using D = 0.52 W m−2 ◦C−1 (in order to get back 
a climate more closely resembling the modern one), find the decrease in Q (to 



within 1 W m−2 ) required for complete glaciation. Explain why a smaller decrease 
in Q is now required to produce a snowball earth. (You may want to think about 
this in terms of the climate sensitivity as well.)  
 
CO2 increases  
A crude way of introducing CO2 forcing into to the model is to adjust the model 
parameter A by ∆A, where  
∆A = −k ln (CO2/380) with k = 3 Wm−2 and CO2 is the concentration of CO2 in 
ppmv. Thus, an increase in atmospheric CO2 causes a decrease in the longwave 
emissions to space, so the temperatures have to rise to achieve balance. During 
the ice ages, records from ice cores show CO2 varied between 200 ppmv and 
280 ppmv. A doubling (or tripling) of CO2 from preindustrial values would take 
carbon dioxide levels up to around 560 (or 840) ppmv, respectively. Explore what 
effects these values would have on the climate of this model.  
 
Spatial variations in D 
 The Hadley Cell is an up-down/north-south tropospheric circulation in the 
atmosphere which operates in the tropics (from the equator to about 30O N/S). 
Very basically, it takes the intensely heated air at the surface near the equator, 
lifts it and spreads it poleward at the tropopause. Once the air aloft reaches about 
30O , it sinks back toward the surface. After it reaches the surface, the air returns 
toward the equator, completing the circuit. The Hadley Cell helps to tranpsort 
heat from the tropics to the polar regions.  
 Lindzen and Farrell (J. Atmos. Sci., 1977) suggested that since the Hadley 
Cell was more effective at redistributing heat than extratropical weather systems, 
D should vary with latitude (i.e. D = D(x)). They suggested using a larger value of 
D within the tropics. This can be crudely represented by increasing D by a factor 
of 10 (equatorwards of about 30O , say). An implementation that will achieve this 
is the following:  
D = 0.45[1 + 9 exp( −(x/ sin 30O )6 )]  
Don’t panic – all you have to do is push the simulate Hadley Cell button. Describe 
the resulting climate. Examine and try to explain the effect on the decrease in Q 
required for complete glaciation.  
 


