#### OCN/ATM/ESS 587

**Tropical ocean/atmosphere/climate interactions....** 

**Forcing mechanisms** 

**ENSO:** basic cause-effect relations

Feedbacks....local

Feedbacks....N. Pacific

Feedbacks....global

General forcing mechanisms....

- Narrow-band forcing (a single frequency forcing mechanism yields a single frequency response).
   Examples: Milankovich cycles, tides, etc.
- Broad-band forcing (forcing is spread out over a band [perhaps narrow] of frequencies, and response is similarly broad-band). Example: ENSO
- Other, such as red noise. Example: PDO.



**Fig. 8.6** History of  $\delta^{18}$ O over the last 2.5 million years derived from several ice cores. [Plot made from data provided by M. E. Raymo and previously published in Raymo *et al.* (1990). Reprinted with permission from Elsevier Scientific Publishers.]



[from Hartmann]



Mean SST and wind over the tropical Pacific

[from B. Kessler]



#### **Normal surface currents in the Pacific**

#### West

**East** 



#### **Temperature along the equator: normal conditions**

Normal case for the **Equatorial Pacific: balanced** forces, wind and sea level gradient



Ew + Ep = × =0 Ep = - 907

**Pressure gradient =** sea level gradient **=**−**g**∇η

equilibrium state

[forces balanced]

If the wind is removed, the 7) = 7) (x, t) sea level gradient attempts

to propagate to a new

• X

[forces unbalanced]



Wind stress is east (pressure force to the west); sea level gradient yields ocean pressure force to the east.





**ENSO....an example of air-sea interaction and feedback** 

For reasons largely unknown, at intevals of ~ 5 years the easterly (ie, from the east) winds in the Equatorial Pacific disappear over the course of a few months, often reappearing as westerlies.

This causes the equatorial sea level gradient to be unbalanced, resulting in an oceanic flow to the east at the equator.



#### ENSO. The ENSO Index: Darwin (Australia) minus Tahiti atmospheric presssure - - -



(normal)

(ENSO)

D-





#### **Present estimates of the ENSO index**

D–T < 0 (normal) D–T > 0 (ENSO)



SST anomaly in the eastern equatorial Pacific, 1860-2000



ENSO appears to often begin with westerly wind bursts in the western Pacific

SST falls in conjunction with westerly wind bursts



#### Wind and SST anomalies for the 1997-98 ENSO event



(b) EL NIÑO CONDITIONS

#### **Examples of ENSO events during the past 50 years**



Warm events (EN): 1953, 1957-58, 1965, 1969, 1972, 1977, 1982, 1987, 1992-93, 1997-98, 2002 Cold events (LN): 1950, 1955-56, 1964, 1971, 1973-75, 1984, 1988, 1999-00, 2007

1999

#### 1998 Sea level anomaly during the 1997-1998 event

1997



1996





**Composite ENSO SST anomaly** 





The Walker circulation is a system of upwelling and downwelling in the atmosphere.

**ENSO OLR anomaly disrupts the Walker circulation** 



## **ENSO Walker circulation**

 $\rightarrow$ 

# **Normal Walker circulation**

 $\leftarrow$ 



#### Correlation of Darwin surface pressure with global surface atmospheric pressure



[Note large-scale correlations]





# Precipitation correlations with Darwin pressure during ENSO events



# Precipitation anomalies







#### Local SST effects from ENSO



#### **Typical precipitation anomalies from ENSO**



#### **Typical air temperature anomalies from ENSO**

SST and OLR in the central equatorial Pacific generate atmospheric anomalies in the form of Rossby waves that communicate the warming at long distances



#### Local sequence of events: wind (atm) $\rightarrow$ SST (ocn) $\rightarrow$ OLR (ocn/atm) $\rightarrow$ P (atm) Remote events: P (atm) $\rightarrow$ SST (ocn) ; P (atm) $\rightarrow$ precipitation



# Position and strength of the Aleutian low pressure during 97-98 El Nino and 71-72 La Nina events



Jacobs et al. (1994) showed how a single ENSO event could affect the N. Pacific sea level, SST, and circulation over a long period.





**Equatorial Pacific observing system** 



SST Anomaly, 12/2006 (El Niño conditions)

#### SST Anomalies (\*C)



Pacific SST anomaly, 10/2007 (from NOAA) (La Niña conditions)



Pacific SST, 10/2007 (from NOAA) (La Niña conditions)



(SST anomalies, 10/07-10/08)



(SST anomalies, 10/08-10/09)

Sea Surface Temperature Anomaly (°C), Base Period 1971-2000 Week of 17 OCT 2007



weather zone

polar.ncep.noaa.gov

![](_page_38_Figure_2.jpeg)

Global SST Anomaly, 10/27/09 (El Niño conditions)

Summary: ENSO is an atmosphere-ocean coupled mode of oscillation (broad-band):

#### (1) Genesis: ?? (atm or ocean)

(2) Atmospheric response: Pacific Eq. winds
(3) Ocean response: warming in the eastern and central Eq. Pacific; eastern upwelling suspended
(4) Atmospheric response: Eq. warming due to OLR anomaly from the ocean; Rossby wave generation
(5) Non-local response, atmosphere: anomalies in precipitation, wind, and temperature globally
(6) Non-local response, ocean: warming/cooling of boundary currents, ecosystem effects, .....

(7) Longer-term effects: relation to PDO, AO, NAO??