Climate Dynamics (PCC 587): Clouds and Feedbacks

DARGAN M. W. FRIERSON
UNIVERSITY OF WASHINGTON, DEPARTMENT
OF ATMOSPHERIC SCIENCES

DAY 7: 10-22-09

Today...

- A summary of feedbacks
 - o Water vapor, lapse rate, ice-albedo
 - o Clouds and their feedbacks: can be positive or negative
- How to estimate climate sensitivity given different feedbacks
 - o And what is climate sensitivity

Clouds

- Condensed water droplets or frozen crystals suspended in air
- Cloud formation happens when...
 - Moist air cools (so saturation is reached)
 - × Often by lifting
 - Cloud condensation nuclei (stuff that droplets/ice can stick to) help the process
 - × Without CCN, supersaturation can occur

Contrail Effects

• Net contrail effects:

- Small warming effect on climate (around o.01 W/m2 of radiative forcing)
- Nighttime flights are especially important for warming (25% of flights, 60-80% of warming), as are flights in winter (22% of flights, 50% of forcing)

Cloud Effects

- Two opposite effects:
 - Reflecting solar radiation (cooling)
 - × Based on their thickness
 - Greenhouse effect (warming)
- Can either have warming or cooling effect depending on type!

Longwave Effects

- Clouds emit essentially like blackbodies in the infrared: $E = \sigma T^4$
- High clouds (cold tops):
 - Very small OLR
 - Trap heat effectively
- Low clouds (warm tops):
 - OLR isn't changed much

Total Cloud Forcing

- Cloud forcing = Average value cloud free value
 - OLR: +31 W/m2
 - o Solar: -48 W/m2
 - o Net: -17 W/m2
- Clouds have net cooling effect on climate

Cloud Feedbacks?

- If low clouds disappear w/ warmer temperatures, cloud feedback would be positive
- If low clouds increase => negative feedback
- High clouds may change too...
- Next, let's discuss forcings vs feedbacks

Forcings vs Feedbacks

- Forcings:
 - Things that change climate directly
 - × CO2, methane, solar, aerosols, etc
- Feedbacks:
 - Things that respond to a change in temperature
 - Water vapor
 - × Lapse rate
 - Ice coverage (sea and land)
 - × Clouds
 - o These would presumably respond similarly to any forcing
 - × In a per degree warming manner

Radiative Forcing

- Remember we can calculate radiative transfer very accurately
- *Radiative forcing*: a useful method of quantifying climate forcing of different agents
 - Keep temperatures the same, instantaneously change forcing, and calculate effect on radiation
 - o Ex 1: if solar radiation was decreased by 2 W/m2
 - x Radiative forcing would be -2 W/m2
 - o Ex 2: if CO2 was instantly doubled, OLR decreases by 4 W/m2
 - Radiative forcing is 4 W/m2

Radiative Forcing and Temperature Response

- Temperatures must respond to a radiative forcing
 - o Positive radiative forcing → temperatures must increase
 - This will then reduce the radiative imbalance
- How much temperature response depends on feedbacks though
 - Radiative forcing is defined so it doesn't depend on feedbacks

Feedbacks

- For instance, say lots of ice was on the verge of melting
 - o Then any small warming would be strongly amplified
- On the other hand, say the lapse rate feedback could act strongly (warming the upper troposphere really quickly)
 - Then the surface temperature might only need to increase a tiny bit to respond to the forcing

Feedbacks

- Remember:
 - A positive temperature change is always required to balance a positive forcing
 - Could be very small though if there are many strong negative feedbacks
 - If there are many strong positive feedbacks, system could spiral out of control
 - * "Runaway greenhouse effect": Earth keeps getting hotter & hotter until all the oceans evaporate
 - × Not going to happen on Earth, but happened on Venus?

Climate Sensitivity

- Climate sensitivity:
 - The total temperature change required to reach equilibrium with the forcing
 - Opends on feedbacks! (unlike radiative forcing)
 - Refers to equilibrium state
 - Real climate change is transient: we'll discuss this later

Climate Sensitivity and Feedbacks

- How does each feedback affect radiation
 - o E.g., how much decrease in OLR per unit increase in humidity
- And how fast does a temperature rise cause the quantity to increase
 - E.g., water vapor content increases 7%/K
- Derivations on the board...