
Simple and basic dynamical ideas…..

• Newton’s Laws

• Pressure and hydrostatic balance

• The Coriolis effect

• Geostrophic balance

• Lagrangian-Eulerian coordinate frames
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Coupled Ocean-
Atmosphere 
Systems

Coupled Ocean-
Atmosphere 
Systems 
(simplified)

Hydrostatic balance (vertical motion)
Coriolis effects (horizontal motion)
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Newton’s Laws….

F ma mx= =∑ [a 2nd order vector ODE or PDE; 
actually 3 scalar ODE/PDEs ]
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where

the 3 ODEs are:
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F F=note notation variants:



Properties of an atmosphere and ocean at rest:

Note that gases and liquids are fluids.   Fluids differ from 
solids in that fluids at rest cannot support a shearing 
stress….the distinctive property of fluids.

A fluid at rest cannot sustain a tangential force…the fluid 
would simply glide over itself in layers in such a case.  

At rest, fluids can only sustain forces normal to their 
shape (a container, for example).  Pressure is the 
magnitude of such a normal force, normalized by the 
area of the fluid normal to the force.  

pressure = normal force / unit area
[pressure is a scalar]
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The pressure cube…

Let Fp be the vector 
force per unit volume, 
in order to take the 
size of the cube out of 
the problem:
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The force/cube equations for all of the faces of the 
cube can be combined to yield the vector equation

{ , , }p
p p pF p
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Suppose the force is redefined on a per unit 
mass basis; then

This equation says, simply, that the net pressure 
force acting on a fluid element is given by the 
pressure gradient.
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Pressure, continued…..

If only pressure forces are acting on an element of 
fluid (air or seawater), then due to Newton’s Laws 
the element must be accelerating.  If the pressure 
forces are balanced by some other force, then the 
fluid element can be in equilibrium (ie, at rest).

What other forces are there? 
Consider gravity…

ˆ ˆk ; kmg gF mg F g= − = −



If the pressure force is balanced by the force of gravity, 
then 

0 0m gF F F= ⇒ + =∑
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the hydrostatic relation

[horizontal equations]

[vertical equation]
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which can be easily integrated.

( ) (0)p z g z pρ= − + assuming ρ = constant

If we define the pressure at the sea surface to be zero, then

( )p z g zρ= − pressure at any depth can be calculated

Oceanic case:

Note:  SI units of pressure are pascals, but oceanographers typically 
use decibars; numerically the depth in meters is the same as the 
pressure in decibars.

The hydrostatic relation….



Check the units (oceanic case)….
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( )p z g zρ= −
weight per unit area

Notes…

• Depth (z) is negative – downwards.

• The hydrostatic pressure is just the weight of 
the water column above (per unit area).
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Atmospheric case:

[ideal gas law]

For an isothermal atmosphere (T constant) the hydrostatic 
relation can be integrated to find that

[the scale height]

Here ps is the sea level pressure and H ∼ 7.6 km. 
Pressure decreases exponentially with altitude. 

p RTρ=

/e /z H
Sp p H RT g−= =



Variation of pressure with altitude in the atmosphere….

Eq90°

ps ∼ 1000 mbar



When can the hydrostatic relation be 
used? (ie, what has been assumed here?)

We assumed that pressure forces balance 
gravity…..when will this be true?

0 0m gF F F= ⇒ + =∑
But suppose instead that
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<< the flow will still be hydrostatic.
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g g

<< ⇒ >>
for L = 1 meter,
this will be true as long as 
T ≥ 1 sec (ocean)

for L = 1 km, this will be true as long as T ≥ 30 sec (atmosphere)



pressure (continued)……

p high p low
← p

− p  →

Fm  →
[thus, a force equal to − Fm
is needed to balance the 
pressure force]



The Coriolis effect….

(i) Motion on a nonrotating Earth

→ The motion is determined by Newton’s Laws with gravity, 

ˆF mx gr= = −∑
Example:  projectile motion

Note:  Newton’s Laws as normally used are true only in an 
inertial coordinate frame (one fixed with respect to distant, fixed 
stars.  An Earth-based coordinate system (longitude, latitude, 
altitude; east, north, up) is not an inertial coordinate system.



Coriolis effect, continued

(ii) Stationary motion on a rotating Earth

→The motion is determined by Newton’s Laws with gravity; 
the motion is only stationary in an Earth-based coordinate 
system [ east, north, up; longitude, latitude, altitude].

Motion in an Earth-based coordinate system leads to a new 
effect:  the centrifugal force.

[inertial frame:  centripetal acceleration]

[rotating frame:  centrifugal force]



Coriolis effects….continued

On a rotating Earth the 
effective gravity is the 
sum of the force of 
attraction and the 
centrifugal force.

Ω



Coriolis effect, continued

(iii) Moving particles on a rotating Earth

→ The motion is determined by Newton’s Laws with 
gravity; the motion is not stationary in an inertial frame or 
the rotating frame. 

Motion in the rotating frame leads to a new effect:  the 
Coriolis force.



Coriolis effect (continued)….

A point on latitude λ is 
rotating at a tangential 
velocity VT given by 
VT = V0 cos λ, where V0 is 
the equatorial value.

Moving a distance L between A and B at 
speed Uo requires a time L/Uo .

Earth rotation rate = Ω
Earth rotation time= 1/Ω

ε = (Earth time)/(AB time) = Uo/(L Ω)

ε << 1  (slow AB motion, strong rotation) 
ε >> 1  (fast AB motion, weak rotation)



Coriolis effect (continued)….

Coriolis acceleration = 2Ω × u     u = (u, v, w)

Coriolis force = − 2Ω × u 

i, j, k = east, north, up unit vectors
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Coriolis effect (continued)….



Initial velocity                          Coriolis force

north (0,v,0), v>0                               east
south (0,v,0), v<0                              west

east (u,0,0), u>0                            south, up
west (u,0,0), u<0                         north, down

up (0,0,w), w>0                                 west
down (0,0,w), w<0                            east

Coriolis effect, continued….

ˆ ˆ ˆ2 u 2 ( ( cos sin )i + sin j- cos k)w v u uλ λ λ λΩ× = Ω −

The Coriolis effect is due to rotation + spherical geometry



Coriolis effect (continued)….
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Newton’s Laws with rotation:

or
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Coriolis effect, continued….

add the pressure gradient as a force

steady or nearly steady motion

geostrophic balance

geostrophic flow:  pressure gradient balances the Coriolis force

flow is along lines of 
constant pressure

x

y



The Coriolis effect and geostrophic balance….

Recall the equation for the Coriolis acceleration:

ˆ ˆ ˆ2 u 2 ( ( cos sin )i + sin j- cos k)w v u uλ λ λ λΩ× = Ω −

Note in the i term that (w cos λ)/(v sinλ) = (w/v) cot λ
<< 1, except near the Equator.  So, neglect the
w term with respect to the v term.

Also, note that we have already examined hydrostatic
balance and found that vertical accelerations are small
compared to horizontal.  Thus, ignore the k term here.



Coriolis effect and geostrophic motion….

With these simplifications the geostrophic
equations become
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These equations provide a simple diagnostic tool 
for examining the circulation of the atmosphere or 
the ocean.

+x pressure gradient: northward 
flow in the N. hemisphere

+y pressure gradient: westward 
flow in the N. hemisphere



Coriolis effect (continued)….

Weather map shows geostrophic flow
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Coriolis effects and geostrophic motion….

Global mean sea level from 10 years of Topex/Poseidon
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Lagrangian and Eulerian descriptions of motion….

Newton’s Laws are formulated in terms of the motion of a 
particle in an inertial reference frame.  The Coriolis effect 
provides a modification to Newton’s Laws for a rotating 
frame.  

What happens if we don’t want to follow a particle, but 
instead prefer to examine the flow on a grid?  This is the 
type of observation made by ships on a regular survey 
pattern or at fixed weather stations.  This situation is not 
included in Newton’s Laws, but we can easily modify the 
Laws to allow this description.

Lagrangian description: following a particle
Eulerian description:  on a grid (fixed points)



Eulerian and Lagrangian descriptions….

Consider some property φ that we want to measure,
where φ = φ(x, y, z, t), and (x0, y0, z0) is a fixed point.

In the vicinity of (x0, y0, z0) , we can write that
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Lagrangian-Eulerian descriptions….

This can be rearranged to yield

0 0( , ) ( , )x t x t x y z
t x t y t z t t

φ φ φ φ φ φ
δ
− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Taking the limit as the δ terms go to zero, it is found that
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(total)          (local)    (motion)

Lagrangian Eulerian



Newton’s Laws….

The Eulerian version of Newton’s Laws with rotation are

1 ˆ2 ku u u u p g F
t ρ

∂
+ ⋅∇ + Ω× = − ∇ − +

∂ ∑
[note:  this vector PDE has no general solution]


