Overview of C Capture & Sequestration Possibilities - Capture of CO₂ Emissions from Electrical Power Plants - Capture of CO₂ Directly from the Atmosphere - CO₂ Burial in Spent Petroleum Reservoirs - CO₂ Burial in Saline Aquifers - CO₂ Disposal in the Deep Sea - CO₂ Disposal in Basalt - Disposal in Lakes Beneath Ice Caps - Mineralization of Magnesium-rich Rocks - Seafloor Disposal Broecker (2008) Elements Vol. 5(4): 296-297 ## Overview of C Capture & Sequestration Possibilities - Capture of CO₂ Emissions from Electrical Power Plants - Capture of CO₂ Directly from the Atmosphere - CO₂ Burial in Spent Petroleum Reservoirs - CO₂ Burial in Saline Aquifers - CO₂ Disposal in the Deep Sea - CO₂ Disposal in Basalt - Disposal in Lakes Beneath Ice Caps - Mineralization of Magnesium-rich Rocks - Seafloor Disposal Broecker (2008) Elements Vol. 5(4): 296-297 ## What is it & Why Focus on Power Plants? - Removal of CO₂ before or after coal is burned to produce heat & energy - Power plants account for about 80% of global CO₂ emissions from large stationary facilities - Refineries, chemical plants, cement plants, & steel mills make up the other 20% #### CO₂ Capture from Power Plants: Energy Penalty - Current commercial CO₂ capture systems can reduce CO₂ emissions by 80-90% kW/h, an efficiency of 85 – 95% - CO₂ capture reduces overall efficiency of power generation and other processes because it requires 10-40% more energy input relative to same type of plant without capture Adapted from Juerg Matter, LDEO ## What is it? Why Focus on Power Plants? - Removal of CO₂ before or after coal is burned to produce heat & energy - Power plants account for about 30% of CO₂ emissions in the USA & 80% of global CO₂ emissions from large stationary facilities* - *Refineries, chemical plants, cement plants, & steel mills make up the other 20% #### How is it Done? - CO₂ capture technologies classified as: - Precombustion - Postcombustion - Oxycombustion - Goal is to produce concentrated CO₂ stream for transport to sequestration site # Pros & Cons of CO₂ Capture of Power Plant Emissions - Some proven technologies already in use at small scales - Scaleable - Rapid innovation is occurring & prices are coming down - Doesn't deal with other 70% of CO₂ emissions (in USA) - Increases the cost of electricity - Still need to dispose of CO₂ (Above) Pipeline delivering CO₂ from precombustion capture system in North Dakota oilfield in Saskatchewan, Canada (Below) World's largest LNG tanker w/ 266,000 m³ capacity http://www.tehrantimes.com/index_View.asp?code=172852 ## CO₂ Transport - Except in cases where an industrial plant is located directly above a suitable geological formation, captured CO₂ must be transported from the point of capture to a sequestration site. - In the US, pipelines are the most common method for transporting CO₂. - Compressed CO₂ can also be economically transported by tanker similar to htose used for liquefied natural gas. Adapted from Rubin (2008) $\rm CO_2$ Capture and Transport. *Elements* Vol. 5(4): 311-317. ## Overview of C Capture & Sequestration Possibilities - Capture of CO₂ Emissions from Electrical Power Plants - Capture of CO₂ Directly from the Atmosphere - CO₂ Burial in Spent Petroleum Reservoirs - CO₂ Burial in Saline Aquifers - CO₂ Disposal in the Deep Sea - CO₂ Disposal in Basalt - Disposal in Lakes Beneath Ice Caps - Mineralization of Magnesium-rich Rocks - Seafloor Disposal Broecker (2008) Elements Vol. 5(4): 296-297 ## Direct Capture of CO₂ from Air Artist's Renditions Klaus Lackner's "Artificial Trees" are designed to remove CO₂ from the atmosphere by reaction with a sorbent (originally NaOH.... Very caustic & dangerous) "Global Research Technologies, LLC (GRT), a technology research and development company, and Klaus Lackner from Columbia University have achieved the successful demonstration of a bold new technology to capture carbon from the air. The "air extraction" prototype has successfully demonstrated that indeed carbon dioxide (CO₂) can be captured from the atmosphere. This is GRT's first step toward a commercially viable air capture device." -4/19/07 press release | 500 ck 5 http://www.thebreakthrough.org/blog/2008/03/from_synthetic_trees_to_carbon.shtml http://www.grtaircapture.com/ # Pros & Cons of Direct Atmospheric CO₂ Capture - Deals with all CO₂ in atmosphere (as opposed to just the 30% emitted by fossil fuel power plants) - Scaleable - Unproven technology - Increases the cost of electricity - Still need to dispose of CO₂ # Overview of C Capture & Sequestration Possibilities - Capture of CO₂ Emissions from Electrical Power Plants - Capture of CO₂ Directly from the Atmosphere - CO₂ Burial in Spent Petroleum Reservoirs - CO₂ Burial in Saline Aquifers - CO₂ Disposal in the Deep Sea - CO₂ Disposal in Basalt - Disposal in Lakes Beneath Ice Caps - Mineralization of Magnesium-rich Rocks - Seafloor Disposal Broecker (2008) Elements Vol. 5(4): 296-297 # Storage of CO₂ in Geological Formations Overview of Geological Storage Options 1. Depleted oil and gas reservoirs 2. Use of CO₂ in enhanced oil and gas recovery 3. Deep saline formations - (a) offshore (b) onshore 4. Use of CO₂ in enhanced coal bed methane recovery Produced oil or gas Injected CO₂ Stored CO₂ • CO₂ already used in to improve recovery of oil & gas ${\tt Benson~\&~Cole~(2008)~CO_2~Sequestration~in~Deep~Sedimentary~Formations.~Elements~Vol.~5(4):~325-331}$ ## Pros & Cons of CO₂ Storage in Deep Sedimentary Basins - Abundant locations worldwide - Scaleable - Relatively inexpensive \$0.5-10/ton CO₂ - Unknown risk of leakage - Unknown duration of containment - Increases the cost of electricity # Overview of C Capture & Sequestration Possibilities - Capture of CO₂ Emissions from Electrical Power Plants - Capture of CO₂ Directly from the Atmosphere - CO₂ Burial in Spent Petroleum Reservoirs - CO₂ Burial in Saline Aquifers - CO₂ Disposal in the Deep Sea - CO₂ Disposal in Basalt - Disposal in Lakes Beneath Ice Caps - Mineralization of Magnesium-rich Rocks - Seafloor Disposal Broecker (2008) Elements Vol. 5(4): 296-297 ## Pros & Cons of CO₂ Storage in Deep Ocean - Massive buffering capacity of ocean - Scaleable - Lowers the pH of seawater - 0.3 units for 5600 Gt CO₂— i.e., 200 yr of current emissions - Unknown consequences to marine life - Unknown duration of containment - Relatively expensive - \$5-30/ton CO₂ - Increases the cost of electricity ## Overview of C Capture & Sequestration Possibilities - Capture of CO₂ Emissions from Electrical Power Plants - Capture of CO₂ Directly from the Atmosphere - CO₂ Burial in Spent Petroleum Reservoirs - CO₂ Burial in Saline Aquifers - CO₂ Disposal in the Deep Sea - CO₂ Disposal in Basalt - Disposal in Lakes Beneath Ice Caps - Mineralization of Magnesium-rich Rocks - Seafloor Disposal Broecker (2008) Elements Vol. 5(4): 296-297 Potential mineral hosts of CO₂: (a) calcite, (b) dolomite, (c) magnesite, (d) siderite ## Mineral Carbonation of CO₂ - Mineral carbonation = the fixation of CO₂ into carbonate minerals such as calcite, dolomite & magnesite - Very stable, long-term storage mechanism for CO₂ - Feasibility demonstrated by proportion of terrestrial C bound in these minerals: > 40,000x more in the atmosphere - •Many challenges in mineral carbonation must be resolved: - o overcoming the slow kinetics of mineral–fluid reactions - \circ dealing with the large vol. of source material required - \circ reducing the energy needed to hasten the carbonation process. Oelkers et al. (2008) Mineral Carbonation of CO₂. Elements Vol. 5(4): 325-331. ## How does it work? – ex situ - Mineral carbonation requires combining CO₂ with metals to form carbonate minerals - With few exceptions, the required metals are divalent cations, including Ca²⁺, Mg²⁺ and Fe²⁺ - A major challenge is obtaining sufficient quantities of these cations - The most abundant cation source is silicate minerals. - Carbonate phases are energetically favored to form from the interaction of CO₂ with such silicate phases as forsterite & anorthite as follows: $$\begin{aligned} \text{Mg}_2 \text{SiO}_4 + 2\text{CO}_2 &= 2\text{MgCO}_3 + \text{SiO}_2 \\ \textit{forsterite} & \textit{magnesite} & \textit{quartz} \\ \text{CaAl}_2 \text{Si}_2 \text{O}_8 + \text{CO}_2 + 2\text{H}_2 \text{O} &= \text{CaCO}_3 + \text{Al}_2 \text{Si}_2 \text{O}_5 (\text{OH})_4 \\ \textit{anorthite} & \textit{calcite} & \textit{kaolinite} \end{aligned}$$ - About 6-20 tons of the silicate rocks are req'd to sequester 1 ton of CO₂ - Minerals are ground to increase surface area, reacted with acids (or base) to release cations, & heated in a reactor to speed the carbonation reaction Oelkers et al. (2008) Mineral Carbonation of CO₂. Elements Vol. 5(4): 325-331 # How does it work? – in situ Locations of continental basalts that could serve as *in situ* mineral carbonation sites Oelkers et al. (2008) Mineral Carbonation of CO₂. Elements Vol. 5(4): 325-331. - Inject CO₂ directly into porous rocks in the subsurface where it can react directly with host - Eliminates the need for transport of reactants in and end products out - May provide heat to accelerate the carbonation process - Host rock must contain easily dissolved metal cations & have sufficient permeability & pore volume to store injected CO₂ and carbonatemineral products