Now that we have looked at the physical
processes involved with the exchange of CO,
between the atmosphere and the ocean let’s turn
to the chemical processes
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Chemical Processes Influencing Air-Sea
Exchange of CO,

2. Chemical Processes
o CO, solubility = f (temperature, salinity) [“The Solubility Pump”]




Solubility of Gases as a Function of Temperature
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« Solubility of all gases decreases with increasing T
» Differences result from molecular interactions between
gas & water

Sarmiento and Gruber (2006)

CO, Solubility is a Function of Temperature

* Demonstrations of the temperature dependence
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* pCO2 increases as T increases
* Solubility decreases as T (implying the liquid can hold less of
Increases the gas at higher T, resulting in

higher gas pressure)

McgGillis & Wanninkhof (2006) Aqueous CO, gradients for air-sea flux estimates, Mar. Chem. Vol. 98: 100-108




€02 solubility (mol CO2/kg H20)

Gas Solubility Decreases as Salinity Increases

0.035

0.030 T——

25 degrees C, monovalent salts
25C, NaCl
25¢, KCl

0.025 £ !

25C, NaCl
25C, NaCl

0.020

35 degrees, monovalent salts
35C, NaCl
35C, NaCl

oyt W

0.015

0.010

4 35CKCI

40 degrees C, monovalent salts
40C, NaCl

40, Kel

40C, NaCl

25C, divalent salts

°

0.005

>

25C, CaCi2
25C, MgCI2

>
>

0.000 «v)

Natural Range of Seawater NaCl (Salinity)

35C, dvalentsalts o 0x (2005) CATO Workpackage WP 4.1, Fig. 6¢

>

35C, CaCl2 http://upload.wikimedia.org, ‘commons/2; ea_salt-e-dp_h

>

35C, MgCI2

0 05 1 15 2

25 3 35

molarity salt solution (M)

4

Sea salts Sea water

Water
96.5 % (965 g)

Sulfate
7% (279)

Calcium Magnesium
12%(0429) 37%(139) Salt
sium, Minor if 35%(359)
11%(0399) 07%(0256) Quanttes i et to 1 kg o 1 4o of sea valor.

Depth, m

The Carbon “Solubility Pump”

Temperature , °C

0 5 1015 20 25 30
0 TR B R B

50

100 +

150 ~

200

mixed Layer

thermocline

» CO, is more soluble in cold waters than
in warm waters (the thermal pump), &
more soluble in fresher waters than
saltier waters (the salt pump).

« If alkalinity (see following discussion)
were uniform throughout the ocean & if
both cold & warm surface waters
equilibrated their pq, with the
atmosphere, then cold surface waters
would have a higher dissolved CO,
content than warm surface waters.

* As these cold surface waters circulate
into the deep interior of the ocean, deep
waters will have more CO, than warm
surface waters.

wikimedia. ikipedi: 3e/Wiki_plot_04.pr




Chemical Processes Influencing Air-Sea
Exchange of CO,

2. Chemical Processes

o Carbonate chemical equilibrium

CO, Uptake by the Ocean: the Carbonate System

= The ocean can take up CO, from the atmosphere in amounts that far
exceed what would be expected based on solubility alone

= The extra absorbing power is caused by the carbonate buffer system

*CO, gas dissolves in seawater to become aqueous CO,
CO,(g) €> COy(aq)
* Henry’s Law describes the equilibrium between CO,(g) & CO,(aq)
Ky, = [CO,(aq)]/pCO, (afunction of T & S)
» CO,(aq) combines with water to produce carbonic acid
CO,(aq) + H,0 © H,CO4
* At the pH of surface seawater (~8.2), carbonic acid rapidly dissociates
into a hydrogen ion and a bicarbonate ion
H,CO, & H" + HCO,
* The hydrogen ion then reacts with a carbonate ion to produce a second
bicarbonate ion

H* + CO,” e HCO,




CO, Uptake by the Ocean: DIC

* Since only ~1% of CO,(aq) exists as H,CO; it is usually left out of the sum
of dissolved inorganic carbon (DIC) species

DIC = CO,(aq) + HCO, + CO,”

» The molar ratio of these three species in seawater is about 1 : 100 : 10
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CO, Uptake by the Ocean: Conservative Quantities

= DIC is a conservative quantity in seawater, meaning
* Its concentration can only be changed by mixing & advection
* It can be mixed linearly

« Non-conservative properties (e.g., O, & PO,%) are altered by
biological & chemical processes

* An example 2000 I,’
xo:,idets)?uzlxmg ,’/ Hypothetical non-
where the [?llc v conservative
concentration DIC /I ssgcufs -
changes linearly umol/kg y [e.g., PO, or Fe]
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CO, Uptake by the Ocean: Alkalinity

= Another conservative quantity in seawater that is important for
understanding the exchange of CO, between the atmosphere & the
ocean is Alkalinity, the best definition of which | have ever read is:

The negative charge deficit in seawater that is compensated by ions
which can exist in more than one charge state. (sroecker, 2005)

B(OH),"
w .
65° NCD *Seawater must be electrically
<3 TROPICAL
SE SURFACE neutral
0% WATER
He =222x10"3

* Though comprised primarily of
e ions with a fixed electrical charge®,
such as the cations Na*, K*, Mg?*,
Ca?*, and the anions CI- & SO,?,
there is a slight deficit of negative
charge—the alkalinity

0

0 L
CATIONS|ANIONS “pH-independent species; strong acids & bases

Broecker (2005) The Role of the Ocean in Climate Yesterday, Today and Tomorrow, Eldigio Press, NY.

CO, Uptake by the Ocean: Alkalinity (cont'd.)

» The negative charge deficit is compensated by ions that can exist in more
than one charge state (pH-dependent species; weak acids & bases)

* The carbon species HCO5~ & CO4? and the boron species B(OH); &
B(OH), serve in this role

* Thus
NCD = Alkalinity = HCO4 + 2*CO,4% + B(OH),

: : : : |+ Alkalinity is greater in the
1000, © MW deep ocean than in the
wof - 0 a0 : I surface ocean because Ca?*

ions are incorporated into

2000 O o0 oF
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as00] ssﬂ : surface waters and released
wol O . 1 by dissolution of CaCOy; in
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Distance (km) A biological process we will discuss shortly

Adapted from Broecker (2005) The Role of the Ocean in Climate Yesterday, Today and Tomorrow, Eldigio Press, NY.




CO, Uptake by the Ocean: Alkalinity (cont’d.)

used as a simplifying approximation:

* Because borate concentrations in the ocean are only 2-5% of total
Alkalinity they are often left out and the term Carbonate Alkalinity is often

Carbonate Alkalinity = HCO; + 2*CO,4*

-1

S =35%, T=20C,DIC=2x 103 mol kg!
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Broecker (2005) p. 81, Emerson & Hedges (2007) Fig. 4.2.

CO, Uptake by the Ocean: the Revelle Factor
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Figure adapted from Ed Boyle 12.842 Lecture Notes (2008)

* The amount of CO, the
ocean can absorb from the
atmosphere beyond the
amount of CO, gas that can
be dissolved in it is referred
to as its buffering capacity

* The buffering capacity of
the ocean is quantified by
the Revelle Factor

» The RF (aka buffer factor)
relates the fractional
change in atmospheric
pCO, to a fractional change
in DIC (after re-
equilibration)

» RF is directly proportional
to the ratio of DIC :
Alkalinity (see next page...)




Buffering Capacity of the Ocean

» Because Carbonate Alkalinity = HCO4™ + 2*CO,* it is clear that the
greater the alkalinity of a solution the greater its potential for neutralizing

acid (H*), such as CO, :
CO,(aq) + H,0 €> H,CO,4
H,CO; €> H*+ HCO;
H"+CO,” €> HCO,

CO,(aq) + H,0 + CO,” «>  2HCO,

« The more CO,?, or Alkalinity, contained in the water, the more CO,
(acid) it will be able to absorb

« But the total amount of DIC is also a factor, because with low
concentrations of DIC there cannot be large amounts of CO,” to
neutralize CO, at any pH

*» That is why the Revelle factor is proportional to (DIC / Alkalinity). Low
values of either quantity imply greater capacity to buffer added CO,.

Buffering Capacity of the Ocean: The Revelle Factor

1994 distribution of the Revelle factor averaged
over upper 50m of water. « Low RFs occur in warm tropical-
. . . S— | | subtropical waters; high RFs in cold
high latitude waters

« The capacity for seawater to take
up CO, from the atmosphere is
inversely proportional to the RF

20°N \) 7 A y « Hence, the lower the RF, the

4 N : ; ) higher the oceanic equilibrium

5 ) 9 q
. concentration of CO, for a given

atmospheric CO, increase
« North Pacific surface waters have
a higher RF at comparable latitudes
& consequently lower
anthropogenic CO, concentrations

8 ‘ > « This difference results from North
80°S Pacific alkalinity values about 100

60°E 120°E 180° 120°W  60°W 0° mol/kg lower than in the North
Atlantic
| & | ]
8 9 10 11 12 13 14 15 16 « Current RFs are about one unit
Revelle Factor higher than in the preindustrial
ocean.

« Lower RF = Greater buffering capacity

Sabine et al. (2004) Science Vol. 305: 367-371




Equilibration Time for Atmospheric Gases in Ocean
Mixed Layer

Simple Gas Exchange
(e.g. 02, Ar)

~2 weeks

 For mixed layer
depth of 100m &
piston velocity of
2000 m/yr

« Equilibration time
=100m/2000m yr-’
=0.05yr = 18d

Equilibration Time for Atmospheric Gases in the
Ocean Mixed Layer

pCO2 equilibration

~1 year

* Change in pCO, causes
equal change in CO,(aq)

* Revelle factor: fractional
change in pCO, is ~10x
greater then DIC change

* Since CO,(aq)=0.5% of
DIC it takes 10/0.5, or 20x
longer to equilibrate DIC
then to equilibrate CO,(aq)
 Equilibration time
=(100m / 2000m yr')*20="1yr




Equilibration Time for Atmospheric Gases in the
Ocean Mixed Layer

carbon isotope equilibration
(C13,C14)

~10 years

« Total DIC must equilibrate with
atm. CO,

« 1m?2 of upper 100m of ocean
contains: 10°kg water *
(2000*10-*mol C/kg water)
=200 moles C

» CO, gas exchange rate = 20
mol/m?2/yr (see prev. lec.)

« Equilibration time
= (200 mol) / (20 mol/m?/yr)
=10yr

Now that we have looked at the physical &
chemical processes involved with the exchange of
CO, between the atmosphere & the ocean let’s
turn to the biological processes

Chemical & Physical Processes Biological Pumps
Air Solution Pump Organic Carbon Pump CaCO3 Counter Pump
co, co, co, co,) co, co,
Surface
Cold Warm + ~ Production of
Ocean Fresh Haline Photosynthesis "y I Calcareous Sheli
High Low Carbon : w B Alkalinity
Solubility Consumption Pt wy Consumption
' L '
H [ ot H
Intermediate POCfux § I N L $ coconn
Water v 1 ¢ N : [
Remineralization ° <
Carbon Calcium Carbonate
Release Re-dissolution
Deep Alkalinity
Ocean Release
Sediment

IPCC 2007 Fig. 7.10
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Biological Processes Influencing Air-Sea

Exchange of CO,

3. Biological Processes [“The Biological Pump”]

o Photosynthesis & respiration

o  Calcium carbonate production

100

1000

4000

The “Biological Carbon Pump”

* The biologically mediated transfer of CO, & nutrients

from the surface to the deep ocean

CO, + H,0 > CH,0O + O, (simplified photosynthetic eqn.)

106C0,+16HNO,+H,PO,,+122H,0-> (CH,0)106(NH,)16(H,PO,)+1380,

> ~

.7 S~ Settling of

-
-l

i Upwelling of [~~— ~<_organic matter
! nutrients | \/L

R Surface Ocean

CH,0 + O, > CO, + H,0 (simplified respiration eqn.)

* The elemental
composition of
phytoplankton in the
ocean is amazingly
constant, as 1t noted
by A.C. Redfield*

* This “Redfield ratio”
characterizes both
phytoplankton &
seawater!

* Grazing of
phytoplankton by
zooplankton produces
fecal pellets that sink &
transport algal biomass
to the deep sea where it
is “remineralized” back
to inorganic nutrients

* Redfield, Ketchum & Richards (1963) “The influence of organisms on the composition of sea-water.” In: M.N. Hill (Ed.), The Sea 2: 26-77, Interscience, NY.
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A More Realistic View of Biological Processes in
the Surface Ocean “Box”

hv CO, Humans
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POM = Particulate Organic Matter é
DOM = Dissolved Organic Matter

Emerson & Hedges (2007) Chem. Oceanogr., Fig. 6.5

Biological Pump Effect on Nutrient Distributions

Po,i10°mol kg')
3 [’

North Pacific
(THO)>5°C)

* Nutrients such as N & P
stripped out of surface water
by photosynthesis

o Consuming CO,(aq)
o Producing O,

* Transported to deep sea by
sinking fecal pellets

* Released back into deep
water during decomposition
by bacteria (remineralization)

@)

Shaffer (1996) J. Geophys. Res. Vol. 101(C2): 3723-3745.
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Biological Pump Effect on Nutrient Distributions
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* Note that O, has mirror-image profile of PO,*

Shaffer (1996) J. Geophys. Res. Vol. 101(C2): 3723-3745. GEOSECS data.

Combined Effect of the Biological Pump &
Ocean Circulation

r;o.m‘mol k't

North Pacific
(THO) 25°C)

E Antarctic Circumpolar Current

{al

= ?

PO4: Shaffer (1996) J. Geophys. Res. Vol. 101(C2): 3723-3745. MOC: John Marshall, MIT.




Phosphate (umol/kg) for P16 150°W

Biological Pump + Ocean Circulation Effect on Phosphate
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* Oldest water in ocean accumulates most remineralized PO,*, the
ultimate source of which was photosynthesis in the global surface ocean.

WOCE (2007) Atlas Volume 2: Pacific Ocean

Biological Pump + Ocean Circulation Effect on DIC
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* Oldest water in ocean accumulates most respired CO,, the ultimate
source of which was photosynthesis in the global surface ocean.

WOCE (2007) Atlas Volume 2: Pacific Ocean




Biological Pump + Ocean Circulation Effect on Oxygen

* Oldest water in ocean is most impoverished in O,
because 138 moles of O, are consumed per mole of
PO,* liberated during organic matter decomposition

» From the Redfield ratio of C:N:P:O, of 106:16:1:-138

WOCE (2007) Atlas Volume 2: Pacific Ocean
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Global Nitrate & Water Age at 3000 m
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<~ The best visual depiction of the combined effect of the biological pump & ocean circulation | have seen!
From Key et al. (2005) in Emerson & Hedges (2007), Fig. 6.16.




