

Net reaction of Rock Weathering on Land & (Biogenic) Mineral Precipitation in the Ocean
Carbonate Weathering: $CaCO_3 + H_2CO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$ Carbonate Precipitation: $Ca^{2+} + 2HCO_3^{-} \rightarrow CaCO_3 + H_2CO_3$
0 <u>Note:</u> Both reactions occur at Earth surface conditions
Calcium-Silicate Weathering: CaSiO ₃ + 2H ₂ CO ₃ \rightarrow Ca ²⁺ + 2HCO ₃ ⁻ + SiO ₂ (aq) + H ₂ O <u>Note:</u> Silicate minerals do not re-form at Earth surface conditions
Carbonate Precipitation: $Ca^{2+} + 2HCO_3^- \rightarrow CaCO_3 + H_2CO_3$ Opal (Biogenic Silica) Precipitation: $SiO_2(aq) \rightarrow SiO_2(s)$ Ocean-atmosphere CO_2 exchange: $CO_2 + H_2O \rightarrow H_2CO_3$
$CaSiO_3 + CO_2 \rightarrow CaCO_3 + SiO_2$
 Ca²⁺ liberated from silicate weathering leaves ocean as CaCO₃ 2 mol H₂CO₃ req'd to weather CaSiO₃ <u>but</u> only 1 mol H₂CO₃ liberated during CaCO₃ precipitation
Added 1/30/09

Reservoirs (Pg):		
Atmosphere: CO2 (288 ppm in 1850) (369 ppm in 2000)	612 784	
Oceans: Biota	1-2	
DOC Oro C in codimente (1 motor)	700	
DIC	38,000	 Excludes crustal rocks
Terrestrial: Biota	600	(& mantle!) other than
Soil Humus (1 meter)	1,500	
Fossil Fuels (identified reserves), gas	44	coal, oll & gas
01l	90 hala 3440	
coul, on said e s	5110	
Fluxes (Pg yr ⁻¹):		
Atmosphere-Ocean exchange	90	
Gross Primary Production Ocean	100	
Land	120	
Net Primary Production Ocean	45	
Land Not C support from the surface energy	60	
Sedimentation of Org. C. in the ocean	0.2	
Anthropogenic Changes (Pg or Pg yr ⁻¹):		
Cumulative Changes (Pg): (1800-1994)		
Fossil Fuels Burnt & Cement Prod.	244	
Atmospheric Increase	165	
Inferred Terrestrial Change	-39	
Partitioning of Anthropogenic Fluxes (1990s) (Pg yr ⁻¹)		
Fossil Fuel and Cement Production	6.3 ± 0.4	D_{T} = starsen = 10 ¹⁵ s = 0t sizet
Atmosphere Accumulation	3.2 ± 0.1	Pg, petagram = 10^{13} g = Gt, gigato
Uptake by Terrestrial Biosphere	-1.4±0.7	

Outline of Processes Influencing Air-Sea Exchange of CO₂

- 1. Physical Processes (kinetics)
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation
- 2. Chemical Processes
 - CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - o Carbonate chemical equilibrium
- 3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - $\circ~$ Calcium carbonate production

Outline of Processes Influencing Air-Sea Exchange of CO₂

- 1. Physical Processes
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation
- 2. Chemical Processes
 - CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - Carbonate chemical equilibrium
- 3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - Calcium carbonate production

Outline of Processes Influencing Air-Sea Exchange of CO₂

- 1. Physical Processes
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation
- 2. Chemical Processes
 - CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - o Carbonate chemical equilibrium
- 3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - o Calcium carbonate production

The Role of Ocean Circulation in Air-Sea Exchange of CO₂

- CO₂ in the atmosphere equilibrates with the ocean mixed layer on a timescale of ~1 yr.
 - $\circ~$ We will do this calculation after discussing the chemistry of ocean uptake of $\text{CO}_2.$
- But when atmospheric CO₂ rises (e.g., from fossil fuels) the ocean's uptake of that CO₂ is limited by the rate of penetration of surface waters into the ocean interior.
 - $_{\odot}\,$ That is why the mean age of fossil-fuel CO $_2$ is ~28 years.
- Ocean circulation & the rate at which surface waters enter the deep sea are therefore central in determining air-sea CO₂ exchange (on 10¹-10² yr time scales).

