
1 

Now that we have looked at the physical 
processes involved with the exchange of CO2 

between the atmosphere and the ocean let’s turn 
to the chemical processes 

Chemical & Physical Processes 
Biological Processes 

IPCC 2007 Fig. 7.10 

Chemical Processes Influencing Air-Sea 
Exchange of CO2 

1.  Physical Processes 
o   Air-sea gas exchange = f (wind speed, bubble injection, 

surfactants) 

o  Ocean circulation 

2.  Chemical Processes 
o  CO2 solubility = f (temperature, salinity) [“The Solubility Pump”] 

o  Carbonate chemical equilibrium 

3.  Biological Processes [“The Biological Pump”] 
o  Photosynthesis & respiration 

o  Calcium carbonate production 
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Solubility of Gases as a Function of Temperature 

Sarmiento and Gruber (2006) 

•  Solubility of all gases decreases with increasing T 
•  Differences result from molecular interactions between 

gas & water 

CO2 Solubility is a Function of Temperature 
•  Demonstrations of the temperature dependence 

 McGillis & Wanninkhof (2006) Aqueous CO2 gradients for air-sea flux estimates, Mar. Chem. Vol. 98: 100-108


•  Solubility decreases as T 
increases 

•  pCO2 increases as T increases 
(implying the liquid can hold less of 

the gas at higher T, resulting in 
higher gas pressure) 

• Small effect of salinity 
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Gas Solubility Decreases as Salinity Increases 

Hangx (2005) CATO Workpackage WP 4.1, Fig. 6c 
http://upload.wikimedia.org/wikipedia/commons/2/2c/Sea_salt-e-dp_hg.svg 
 http://upload.wikimedia.org/wikipedia/commons/3/3e/Wiki_plot_04.png 

Natural Range of Seawater NaCl (Salinity) 

The Carbon “Solubility Pump” 
•  CO2 is more soluble in cold waters 
than in warm waters (the thermal 
pump), & more soluble in fresher 
waters than saltier waters (the salt 
pump). 
•  If alkalinity (see following 
discussion) were uniform throughout 
the ocean & if both cold & warm 
surface waters equilibrated their pCO2 
with the atmosphere, then cold 
surface waters would have a higher 
dissolved CO2 content than warm 
surface waters. 
•  As these cold surface waters 
circulate into the deep interior of the 
ocean, deep waters will have more 
CO2 than warm surface waters. 
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Chemical Processes Influencing Air-Sea 
Exchange of CO2 

1.  Physical Processes 
o   Air-sea gas exchange = f (wind speed, bubble injection, 

surfactants) 

o  Ocean circulation 

2.  Chemical Processes 
o  CO2 solubility = f (temperature, salinity) [“The Solubility Pump”] 

o  Carbonate chemical equilibrium 

3.  Biological Processes [“The Biological Pump”] 
o  Photosynthesis & respiration 

o  Calcium carbonate production 

CO2 Uptake by the Ocean: the Carbonate System 

  The ocean can take up CO2 from the atmosphere in amounts that far 
exceed what would be expected based on solubility alone 

  The extra absorbing power is caused by the carbonate buffer system 

• CO2 gas dissolves in seawater to become aqueous CO2 
CO2(g)     CO2(aq) 

•  Henry’s Law describes the equilibrium between CO2(g) & CO2(aq) 
KH = [CO2(aq)]/pCO2    (a function of T & S) 

•  CO2(aq) combines with water to produce carbonic acid 
CO2(aq) + H2O     H2CO3   

•  At the pH of surface seawater (~8.2), carbonic acid rapidly dissociates 
into a hydrogen ion and a bicarbonate ion 

H2CO3     H+ + HCO3
- 

•  The hydrogen ion then reacts with a carbonate ion to produce a second 
bicarbonate ion  

H+ + CO3
2-
    HCO3

- 
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CO2 Uptake by the Ocean: DIC 
•  Since only ~1% of CO2(aq) exists as H2CO3 it is usually left out of the sum 
of dissolved inorganic carbon (DIC) species 

DIC =  CO2(aq) + HCO3
- + CO3

2- 

•  The molar ratio of these three species in seawater is about 1 : 100 : 10 

DIC 
(µmol/kg) 

CO2 Uptake by the Ocean: Conservative Quantities 

  DIC is a conservative quantity in seawater, meaning 
•  Its concentration can only be changed by mixing & advection 
•  It can be mixed linearly 
•  Non-conservative properties (e.g., O2 & PO4

3-) are altered by 
biological & chemical processes 

Salinity 0 35 

DIC 
µmol/kg 

1000 

2000 

Hypothetical non-
conservative 

species 
[e.g., PO4

3- or Fe] 

(removed in 
estuary) 

•  An example 
would be mixing 
in an estuary, 
where the DIC 
concentration 
changes linearly 
from the low value 
in rivers to the 
high value in 
seawater: 
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CO2 Uptake by the Ocean: Alkalinity 

Broecker (2005) The Role of the Ocean in Climate Yesterday, Today and Tomorrow, Eldigio Press, NY.  Emerson & Hedges (2007) Ch.4. 

  Another conservative quantity in seawater that is important for 
understanding the exchange of CO2 between the atmosphere & the 
ocean is Alkalinity, the best definition of which I have ever read is: 

 The negative charge deficit in seawater that is compensated by ions 
which can exist in more than one charge state.  (Broecker, 2005) 

* I.e., pH-independent species; strong acids & bases 
Updated 2/9/09 

•  Seawater must be electrically neutral 

•  Though comprised primarily of ions 
with a fixed electrical charge*, such as 
the cations Na+, K+, Mg2+, Ca2+, and 
the anions Cl- & SO4

2-, there is a slight 
deficit of negative charge, the alkalinity 

•  That deficit is made up by protonating 
& deprotonating acids & bases until 
charge balance is achieved 

(eq/kg) 

CO2 Uptake by the Ocean: Alkalinity (cont’d.) 

Adapted from Broecker (2005), Emerson & Hedges (2007) Chap. 4. 

•  The negative charge deficit is compensated by adding & removing 
protons (H+) to ions that can exist in more than one charge state (pH-
dependent species; weak acids & bases).  Note:  pH = -log[H+] 

•  Important for ocean CO2 uptake are those acids & bases that can exist in 
more than one charge state in the pH range of seawater, ~7-9. 

•  So a more precise definition of alkalinity than Broecker’s would be: 

“The negative charge deficit that is compensated by acids & bases that 
can exist in more than one charge state in the pH range of seawater.” 

•  Because of their high concentration in seawater and their tendency to 
protonate / deprotonate at pH 7-9, HCO3

-, CO3
2-, B(OH)3, & B(OH)4

- are by 
far the most abundant such species 
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CO2 Uptake by the Ocean: Alkalinity (cont’d) 

Adapted from Emerson & Hedges (2007) Fig. 4.2 

•  The high concentrations of carbonate & borate ions make 
HCO3

-, CO3
2-, B(OH)3, & B(OH)4

- the most important 
contributors to alkalinity in seawater since its pH is ~8.2 

CO2 Uptake by the 
Ocean: Alkalinity 

(cont’d.) 

•   Thus in seawater: 
NCD = Alkalinity = HCO3

- + 2*CO3
2- + 

B(OH)4
- 

•  More precise definitions of alkalinity 
exist that include more species 
•  They include ions that contribute < 1% 
to alkalinity b/c they become protonated / 
deprotonated at: 

o  seawater pH, but have low & 
variable concentrations (e.g., 
H3SiO4

-, H2PO4
-, HPO4

2-, PO4
3-)  

o  pH levels << 8 (e.g., Cl-, SO4
2-, F-)  

•  In practice, even borate is left out since 
it is < 5% of alkalinity  
•  The term Carbonate Alkalinity is then 
used as a simplifying approximation: 
Carbonate Alkalinity = HCO3

- + 2*CO3
2- 

Borate contribution to 
Alkalinity: 

108.6 / 2216 *100 = 4.9% 
Adapted from Broecker (2005) and Emerson & Hedges (2007) Chap. 4 
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How is Alkalinity Determined? 
•  Alkalinity is measured by titration:  strong acid is added to seawater 
until all proton acceptors have been protonated  
•  “The precise definition of alkalinity of seawater is based on the method 
by which it is determined and the species that exchange protons during 
the titration.” (Emerson & Hedges (2007) p. 4.10) 

•  Operationally carbonate alkalinity is defined as the # of equivalents of 
acid required to bring a sample to the CO2 endpoint, or equivalence point
—I.e., when # moles acid added = moles HCO3

- + 2*moles of CO3
2- 

•  Acid dropped 
from a burette 
into seawater 
until indicator 
changes color 
permanently--
the endpoint. 

•  At this 
equivalence point 
all the CO3

2- & 
HCO3

- have been 
converted to CO2 

•  The carbonate 
alkalinity is 3.8 
meq/L   

Alkalinity in the Ocean 

Adapted from Broecker (2005).  WOCE Pacific Ocean Atlas. 

Alkalinity 
(uMol or µeq/kg) 

WOCE Pacific Ocean 
Line 18 along 105°W 

•  Alkalinity is greater in the deep ocean than in the surface b/c 
Ca2+ ions are incorporated into CaCO3

* (removing alkalinity & 
NCD) in surface waters & released by dissolution of CaCO3 in 

deep waters (adding alkalinity & NCD) 

*A biological process we will discuss shortly 
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CO2 Uptake by the Ocean: the Revelle Factor 

•  The amount of CO2 the 
ocean can absorb from the 
atmosphere beyond the 
amount of CO2 gas that can 
be dissolved in it is referred 
to as its buffering capacity 
•  The buffering capacity of 
the ocean is quantified by 
the Revelle Factor 
•  The RF (aka buffer factor) 
relates the fractional 
change in atmospheric 
pCO2 to a fractional change 
in DIC (after re-
equilibration) 
•  RF is directly proportional 
to the ratio of DIC : 
Alkalinity (see next page…) 

If pCO2
 increases by 10%, 

then DIC increases by 1%  

Figure adapted from Ed Boyle 12.842 Lecture Notes (2008) 

Buffering Capacity of the Ocean 

•  Because Carbonate Alkalinity = HCO3
- + 2*CO3

2- it is clear that the 
greater the alkalinity of a solution the greater its potential for neutralizing 
acid (H+), such as CO2 : 

CO2(aq) + H2O    H2CO3
 

H2CO3    H+ + HCO3
- 

H+ + CO3
2-        HCO3

- 

------------------------------------------------- 
CO2(aq) + H2O + CO3

2-        2HCO3
- 

•  The more CO3
2-, or Alkalinity, contained in the water, the more CO2 

(acid) it will be able to absorb 
•  But the total amount of DIC is also a factor, because with low 
concentrations of DIC there cannot be large amounts of CO3

2- to 
neutralize CO2 at any pH 
•  That is why the Revelle factor is proportional to (DIC / Alkalinity).  Low 
values of either quantity imply greater capacity to buffer added CO2. 
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Buffering Capacity of the Ocean:  The Revelle Factor 

Sabine et al. (2004) Science Vol. 305: 367-371 

•  Low RFs occur in warm tropical-
subtropical waters; high RFs in cold 
high latitude waters 
•  The capacity for seawater to take 
up CO2 from the atmosphere is 
inversely proportional to the RF 
•  Hence, the lower the RF, the 
higher the oceanic equilibrium 
concentration of CO2 for a given 
atmospheric CO2 increase 
•  North Pacific surface waters have 
a higher RF at comparable latitudes 
& consequently lower 
anthropogenic CO2 concentrations 
•  This difference results from North 
Pacific alkalinity values about 100 
mol/kg lower than in the North 
Atlantic 
•  Current RFs are about one unit 
higher than in the preindustrial 
ocean. 

•  Lower RF = Greater buffering capacity 

 1994 distribution of the Revelle factor averaged 
over upper 50m of water. 

Simple Gas Exchange
    (e.g. O2, Ar)

~2 weeks

(depth of mixed
layer divided by
piston velocity 
- i.e. total gas 
content divided 
by gas flux)

pCO2 equilibration

~1 year

carbon isotope equilibration
            (C13, C14) 

~10 years

(change in TCO2 required 
to change pCO2 in 
seawater is divided by gas 
flux: e.g. for a 3% increase 
in pCO2, CO2(aq) rises by 
3% and TCO2 rises by 0.3%; 
but because TCO2 is ~200x 
CO2(aq), it then takes 
200*.3/3=20x longer

 (total carbon dioxide 
content divided by total 
gas flux,
 ~20 moles/m2/yr)

 

Equilibration Time for Atmospheric Gases in Ocean 
Mixed Layer 

•  For mixed layer 
depth of 100m & 
piston velocity of 
2000 m/yr 
•  Equilibration time 
=100m/2000m yr-1 
=0.05yr = 18d 

•  Change in pCO2 causes 
equal change in CO2(aq) 
•  Revelle factor: fractional 
change in pCO2 is ~10x 
greater then DIC change 

•  Since CO2(aq)=0.5% of 
DIC it takes 10/0.5, or 20x 
longer to equilibrate DIC 
then to equilibrate CO2(aq) 
•  Equilibration time   
=(100m / 2000m yr-1)*20=1yr 

•  Total DIC must equilibrate with 
atm. CO2  
•  1m2 of upper 100m of ocean 
contains: 105kg water * 
(2000*10-6mol C/kg water)       
= 200 moles C 
•  CO2 gas exchange rate = 20 
mol/m2/yr (see prev. lec.) 
•  Equilibration time                   
= (200 mol) / (20 mol/m2/yr)     
= 10yr 
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Now that we have looked at the physical & 
chemical processes involved with the exchange of 
CO2 between the atmosphere & the ocean let’s 

turn to the biological processes 

Chemical & Physical Processes 
Biological Processes 

IPCC 2007 Fig. 7.10 

Biological Processes Influencing Air-Sea 
Exchange of CO2 

1.  Physical Processes 
o   Air-sea gas exchange = f (wind speed, bubble injection, 

surfactants) 

o  Ocean circulation 

2.  Chemical Processes 
o  CO2 solubility = f (temperature, salinity) [“The Solubility Pump”] 

o  Carbonate chemical equilibrium 

3.  Biological Processes [“The Biological Pump”] 
o  Photosynthesis & respiration 

o  Calcium carbonate production 
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The “Biological Carbon Pump” 

•  The elemental 
composition of 
phytoplankton in the 
ocean is amazingly 
constant, as 1st noted 
by A.C. Redfield* 
•  This “Redfield ratio” 
characterizes both 
phytoplankton & 
seawater! 
•  Grazing of 
phytoplankton by 
zooplankton produces 
fecal pellets that sink & 
transport algal biomass 
to the deep sea where it 
is “remineralized” back 
to inorganic nutrients  

•  The biologically mediated transfer of CO2 & nutrients 
from the surface to the deep ocean 

Deep Ocean 

Surface Ocean 

0 m 

100 

1000 

4000 

Upwelling of 
nutrients 

Settling of 
organic matter 

CO2 + H2O  CH2O + O2  (simplified photosynthetic eqn.) 

CH2O + O2  CO2 + H2O (simplified respiration eqn.)  

106CO2+16HNO3+H3PO4+122H2O(CH2O)106(NH3)16(H3PO4)+138O2 

(CH2O)106(NH3)16(H3PO4)+138O2106CO2+16HNO3+H3PO4+122H2O 

* Redfield, Ketchum & Richards (1963) “The influence of organisms on the composition of sea-water.” In: M.N. Hill (Ed.), The Sea 2: 26-77, Interscience, NY. 

A More Realistic View of Biological Processes in 
the Surface Ocean “Box” 

Emerson & Hedges (2007) Chem. Oceanogr., Fig. 6.5 

POM = Particulate Organic Matter 
DOM = Dissolved Organic Matter 
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Biological Pump Effect on Nutrient Distributions 

•  Nutrients such as N & P 
stripped out of surface water 
by photosynthesis 

o  Consuming CO2(aq) 

o  Producing O2 

•  Transported to deep sea by 
sinking fecal pellets 

•  Released back into deep 
water during decomposition 
by bacteria (remineralization) 

o  Consuming O2 

Shaffer (1996) J. Geophys. Res. Vol. 101(C2): 3723-3745. 

Biological Pump Effect on Nutrient Distributions 

•  Note that O2 has mirror-image profile of PO4
3- 

Shaffer (1996) J. Geophys. Res. Vol. 101(C2): 3723-3745.  GEOSECS data. 

Phosphate Oxygen 
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Combined Effect of the Biological Pump & 
Ocean Circulation 

+ 

PO4: Shaffer (1996) J. Geophys. Res. Vol. 101(C2): 3723-3745.  MOC: John Marshall, MIT.  

=   ? 

Biological Pump + Ocean Circulation Effect on Phosphate 

WOCE (2007) Atlas Volume 2:  Pacific Ocean 

•  Oldest water in ocean accumulates most remineralized PO4
3-, the 

ultimate source of which was photosynthesis in the global surface ocean. 
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WOCE (2007) Atlas Volume 2:  Pacific Ocean 

•  Oldest water in ocean accumulates most respired CO2, the ultimate 
source of which was photosynthesis in the global surface ocean. 

Biological Pump + Ocean Circulation Effect on DIC 

Biological Pump + Ocean Circulation Effect on Oxygen 

WOCE (2007) Atlas Volume 2:  Pacific Ocean 

•  Oldest water in ocean is most impoverished in O2 
because 138 moles of O2 are consumed per mole of 
PO4

3- liberated during organic matter decomposition 
•  From the Redfield ratio of C:N:P:O2 of 106:16:1:-138 
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Global Nitrate & Water Age at 3000 m 

From Key et al. (2005) in Emerson & Hedges (2007), Fig. 6.16. 

Contours = 14C Age 

  The best visual depiction of the combined effect of the biological pump & ocean circulation I have seen! 

Hard vs. Soft Parts 
•  Some organisms precipitate inorganic 

shells (“hard parts”) out of calcium 
carbonate & silica, the overwhelming 
majority being coccolithophorids 
(CaCO3) & diatoms (SiO2) 

•  On average 22 moles of C as CaCO3 
are precipitated for every 106 moles of 
C converted into phytoplankton 
biomass (“soft parts”) 

•  Results in a Redfield Ratio of 
Corg:N:P:CCaCO3:O2 = 106:16:1:22:-138 

•  Production of CaCO3 is important in 
air-sea CO2 exchange because it 
removes carbon and alkalinity from 
surface water & transfers it to deep sea  

Diatom (SiO2) 

Coccolithophorid (CaCO3) 
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Globally the Production of CaCO3 is 0.6 Gt C/yr 
(~3% of global marine C fixation) 

Barents Sea 

Celtic Seas 

•  SeaWiFS images 
& Composite 
•  50% reduction in 
coccolith blooms 
expected in N. Atl 
(their largest 
habitat) by 2100 
A.D. owing to 
ocean acidification 

Iglesias-Rodriguez et al. (2002) Glob. Biogeochem. Cycl. Vol. 16(4): 1100, doi: 10.1029/GB001454 

Coccolithophorids & Air-Sea CO2 Exchange (c.) 
•  Coccolithophorids alter the Corganic:Ccarbonate or ‘‘rain ratio’’ & increase 
surface pCO2 during calcification, producing one molecule of CO2 for each 
molecule of CaCO3 fixed. 
•  Globally, the rain ratio from the surface ocean is ~ 4:1 
•  This ratio is largely controlled by the dominant taxon fixing carbon such 
that a shift in the phytoplankton community structure from calcifiers to 
silicifiers would affect the capacity of the biological pump 
•  For example,during a bloom of coccolithophorids, photosynthesis: 
calcification & the rain ratio can approach 1:1, & the effect of such high 
calcification rates has been found to change the air-sea gradient of CO2.  
•  Considering that coccolithophorid blooms are responsible for up to 80% of 
surface ocean calcification, the 50% predicted decrease in potential surface 
coccolithophorid bloom areal extent may potentially lead to a significant 
increase in the POC:PIC ratio. 
•  By 2050 an increase in dissolved CO2 & a decrease in the concentration 
of CO3

2- will result in an increase in CaCO3 dissolution.  
•  A decrease in calcification is a short-term negative feedback in the global 
carbon cycle. 

IGLESIAS-RODRI´GUEZ ET AL. (2002): COCCOLITHOPHORIDS IN OCEAN CARBON CYCLE MODELS 
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Ratio of Hard to Soft Parts Produced & Exported from the 
Surface Ocean Influences pCO2 

Sarmiento & Gruber (2007) Fig. 8.3.5 

Alkalinity = HCO3
- + 2*CO3

2- 
DIC = CO2(aq) + HCO3

- + CO3
2- 

•  Vector diagrams demonstrate the 
effect of biological & physical 
processes on surface ocean pCO2: 
o  Gas exchange 

  Proportionally changes ocean 
DIC w/ no effect on alkalinity 

o  “Soft tissue pump” 
  Photosynthesis reduces DIC 
& increases alkalinity with a 
slope of C/N=-106/16=-6.6* 

o  “Carbonate pump” 
  CaCO3 production reduces 
alkalinity by 2 units per unit 
decrease in DIC b/c CO3

2- 
contributes 2 moles of alkalinity 
per mole of DIC 

*Debate continues over the “true” Redfield 
ratio, with this book taking C:N = 117:16 

Takahashi CO2 flux estimates by cause 
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Global Ocean 1° Productivity 

Ocean color/ SeaWifs:  http://oceancolor.gsfc.nasa.gov/SeaWiFS/TEACHERS/sanctuary_7.html 

•  Why is productivity so low in subtropical gyres? 
•  Why is it so high in high latitude oceans?  Along equator?  

On coastal margins? 


