Now that we have looked at the physical processes involved with the exchange of CO₂ between the atmosphere and the ocean let's turn to the chemical processes

IPCC 2007 Fig. 7.10

Chemical Processes Influencing Air-Sea Exchange of CO₂

- 1. Physical Processes
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation
- 2. Chemical Processes
 - o CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - Carbonate chemical equilibrium
- 3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - Calcium carbonate production

Chemical Processes Influencing Air-Sea Exchange of CO₂

- 1. Physical Processes
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation

2. Chemical Processes

- o CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
- Carbonate chemical equilibrium
- 3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - Calcium carbonate production

CO₂ Uptake by the Ocean: the Carbonate System

- The ocean can take up CO₂ from the atmosphere in amounts that far exceed what would be expected based on solubility alone
- The extra absorbing power is caused by the carbonate buffer system
 - •CO₂ gas dissolves in seawater to become aqueous CO₂
 - $CO_2(g) \leftrightarrow CO_2(aq)$ Henry's Law describes the equilibrium between $CO_2(g) \& CO_2(aq)$ $K_H = [CO_2(aq)]/pCO_2$ (a function of T & S)
 - CO₂(aq) combines with water to produce carbonic acid
 CO₂(aq) + H₂O ↔ H₂CO₃
 - \bullet At the pH of surface seawater (~8.2), carbonic acid rapidly dissociates into a hydrogen ion and a bicarbonate ion

 $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

• The hydrogen ion then reacts with a carbonate ion to produce a second bicarbonate ion

 $H^+ + CO_3^2 \longleftrightarrow HCO_3^-$

CO₂ Uptake by the Ocean: DIC • Since only ~1% of CO₂(aq) exists as H₂CO₃ it is usually left out of the sum of dissolved inorganic carbon (DIC) species DIC = $CO_2(aq) + HCO_3^- + CO_3^{2-}$ • The molar ratio of these three species in seawater is about 1:100:10 600 800 1000 DIC 2200 (µmol/kg)

Depth [m]

Depth [m]

Distance [km]

CO₂ Uptake by the Ocean: Alkalinity

■ Another conservative quantity in seawater that is important for understanding the exchange of CO₂ between the atmosphere & the ocean is **Alkalinity**, the best definition of which I have ever read is:

The negative charge deficit in seawater that is compensated by ions which can exist in more than one charge state. (Broecker, 2005)

- Seawater must be electrically neutral
- Though comprised primarily of ions with a fixed electrical charge*, such as the cations Na⁺, K⁺, Mg²⁺, Ca²⁺, and the anions Cl⁻ & SO₄²⁻, there is a *slight* deficit of negative charge, the alkalinity
- That deficit is made up by protonating & deprotonating acids & bases until charge balance is achieved

* I.e., pH-independent species; strong acids & bases

Updated 2/9/09

CO₂ Uptake by the Ocean: Alkalinity (cont'd.)

- The negative charge deficit is compensated by adding & removing protons (H $^+$) to ions that can exist in more than one charge state (pH-dependent species; weak acids & bases). Note: pH = -log[H $^+$]
- Important for ocean CO_2 uptake are those acids & bases that can exist in more than one charge state in the pH range of seawater, ~7-9.
- So a more precise definition of alkalinity than Broecker's would be:
- "The negative charge deficit that is compensated by acids & bases that can exist in more than one charge state in the pH range of seawater."
- Because of their high concentration in seawater and their tendency to protonate / deprotonate at pH 7-9, HCO_3^- , CO_3^{2-} , $B(OH)_3$, & $B(OH)_4^-$ are by far the most abundant such species

Adapted from Broecker (2005), Emerson & Hedges (2007) Chap. 4.

CO₂ Uptake by the Ocean: Alkalinity (cont'd)

 The high concentrations of carbonate & borate ions make HCO₃-, CO₃²⁻, B(OH)₃, & B(OH)₄- the most important contributors to alkalinity in seawater since its pH is ~8.2

CO₂ Uptake by the Ocean: Alkalinity (cont'd.)

PROPERTIES	TROPICAL SURFACE	DEEP PACIFIC	UNITS
WATER DEPTH	0	4000	meters
TEMPERATURE	25.0	1.5	°C
SALINITY	35.0	34.7	g/kg
P _{CO2}	280	510 [*]	10 ⁻⁶ atm
NCD	2216.0	2450.0	10 ⁻⁶ mol/kg
ΣCO ₂	1858.0	2340.0	10 ⁻⁶ mol/kg
(CO ₂) _{aq} (HCO ₃ ⁻) (CO ₃ ⁻)	7.9 1601.5 248.5	29.9 2215.0 95.0	10 ⁻⁶ mol/kg 10 ⁻⁶ mol/kg 10 ⁻⁶ mol/kg
Σ B B(OH) ₃ ⁰ B(OH) ₄ -	410.6 302.0 108.6	407.1 362.6 44.5	10 ⁻⁶ mol/kg 10 ⁻⁶ mol/kg 10 ⁻⁶ mol/kg
(OH¯) pH	8.8 8.15	0.4 7.77 *AT SEA SURFACE PRESSURE	10 ⁻⁶ mol/kg

Borate contribution to Alkalinity:

108.6 / 2216 *100 = 4.9%

· Thus in seawater:

NCD = Alkalinity =
$$HCO_3^- + 2*CO_3^{2-} + B(OH)_4^-$$

- More precise definitions of alkalinity exist that include more species
- They include ions that contribute < 1% to alkalinity b/c they become protonated / deprotonated at:
 - o seawater pH, but have low & variable *concentrations* (e.g.,
 - H₃SiO₄-, H₂PO₄-, HPO₄²⁻, PO₄³⁻)
 - o pH levels << 8 (e.g., Cl-, SO₄²⁻, F-)
- In practice, even borate is left out since it is < 5% of alkalinity
- The term *Carbonate Alkalinity* is then used as a simplifying approximation:

Carbonate Alkalinity = HCO₃- + 2*CO₃²-

Adapted from Broecker (2005) and Emerson & Hedges (2007) Chap. 4

How is Alkalinity Determined?

- Alkalinity is measured by titration: strong acid is added to seawater until all proton acceptors have been protonated
- "The precise definition of alkalinity of seawater is based on the method by which it is determined and the species that exchange protons during the titration." (Emerson & Hedges (2007) p. 4.10)
- Operationally carbonate alkalinity is defined as the # of equivalents of acid required to bring a sample to the CO₂ endpoint, or equivalence point
 —I.e., when # moles acid added = moles HCO₃⁻ + 2*moles of CO₃²
- Acid dropped from a burette into seawater until indicator changes color permanently-the endpoint.

- At this equivalence point all the CO₃²⁻ & HCO₃- have been converted to CO₂
- The carbonate alkalinity is 3.8 meg/L

Alkalinity in the Ocean

Alkalinity is greater in the deep ocean than in the surface b/c Ca²⁺ ions are incorporated into CaCO₃* (removing alkalinity & NCD) in surface waters & released by dissolution of CaCO₃ in deep waters (adding alkalinity & NCD)

Alkalinity (uMol or µeg/kg)

WOCE Pacific Ocean Line 18 along 105°W

Adapted from Broecker (2005). WOCE Pacific Ocean Atlas

*A biological process we will discuss shortly

CO₂ Uptake by the Ocean: the Revelle Factor

- The amount of CO₂ the ocean can absorb from the atmosphere beyond the amount of CO₂ gas that can be dissolved in it is referred to as its buffering capacity
- The buffering capacity of the ocean is quantified by the Revelle Factor
- The RF (aka buffer factor) relates the fractional change in atmospheric pCO₂ to a fractional change in DIC (after reequilibration)
- RF is directly proportional to the ratio of DIC :
 Alkalinity (see next page...)

Figure adapted from Ed Boyle 12.842 Lecture Notes (2008)

Buffering Capacity of the Ocean

• Because Carbonate Alkalinity = $HCO_3^- + 2*CO_3^{2-}$ it is clear that the greater the alkalinity of a solution the greater its potential for neutralizing acid (H^+), such as CO_2 :

$$CO_{2}(aq) + H_{2}O \leftrightarrow H_{2}CO_{3}$$

$$H_{2}CO_{3} \leftrightarrow H^{+} + HCO_{3}^{-}$$

$$H^{+} + CO_{3}^{2-} \leftrightarrow HCO_{3}^{-}$$

$$CO_{2}(aq) + H_{2}O + CO_{3}^{2-} \leftrightarrow 2HCO_{3}^{-}$$

- \bullet The more $\text{CO}_3^{\ 2\text{-}},$ or Alkalinity, contained in the water, the more CO_2 (acid) it will be able to absorb
- But the total amount of DIC is also a factor, because with low concentrations of DIC there cannot be large amounts of ${\rm CO_3}^2$ to neutralize ${\rm CO_2}$ at any pH
- That is why the Revelle factor is proportional to (DIC / Alkalinity). Low values of either quantity imply greater capacity to buffer added CO₂.

Equilibration Time for Atmospheric Gases in the Ocean Mixed Layer

- Change in pCO₂ causes equal change in CO₂(aq)
- Revelle factor: fractional change in pCO₂ is ~10x greater then DIC change
- Since CO₂(aq)=0.5% of DIC it takes 10/0.5, or 20x longer to equilibrate DIC then to equilibrate CO₂(aq)
- Equilibration time =(100m / 2000m yr⁻¹)*20=1yr

Equilibration Time for Atmospheric Gases in the Ocean Mixed Layer

carbon isotope equilibration (C13, C14)

- \bullet Total DIC must equilibrate with atm. CO_2
- 1m² of upper 100m of ocean contains: 10⁵kg water * (2000*10⁻⁶mol C/kg water) = 200 moles C
- CO₂ gas exchange rate = 20 mol/m²/yr (see prev. lec.)
- Equilibration time
- $= (200 \text{ mol}) / (20 \text{ mol/m}^2/\text{yr})$
- = 10yr

Now that we have looked at the physical & chemical processes involved with the exchange of CO₂ between the atmosphere & the ocean let's turn to the biological processes

IPCC 2007 Fig. 7.10

Biological Processes Influencing Air-Sea Exchange of CO₂

- 1. Physical Processes
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation
- Chemical Processes
 - CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - Carbonate chemical equilibrium
- 3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - o Calcium carbonate production

The "Biological Carbon Pump" • The biologically mediated transfer of CO2 & nutrients from the surface to the deep ocean The elemental 0 m composition of $CO_2 + H_2O \rightarrow CH_2O + O_2$ (simplified photosynthetic eqn.) phytoplankton in the ocean is amazingly $106CO_2 + 16HNO_3 + H_3PO_4 + 122H_2O \rightarrow (CH_2O) + 106(NH_3) + 16(H_3PO_4) + 138O_2$ constant, as 1st noted by A.C. Redfield* 100 Surface Ocean This "Redfield ratio" Settling of characterizes both Upwelling of organic matter phytoplankton & nutrients 1000 seawater! · Grazing of $CH_2O + O_2 \rightarrow CO_2 + H_2O$ (simplified respiration eqn.) phytoplankton by zooplankton produces fecal pellets that sink & $(CH_2O)106(NH_3)16(H_3PO_4)+138O_2 \rightarrow 106CO_2+16HNO_3+H_3PO_4+122H_2O_4$ transport algal biomass to the deep sea where it is "remineralized" back Deep Ocean to inorganic nutrients 4000

Hard vs. Soft Parts

Coccolithophorid (CaCO₃)

Diatom (SiO₂)

- Some organisms precipitate inorganic shells ("hard parts") out of calcium carbonate & silica, the overwhelming majority being coccolithophorids (CaCO₃) & diatoms (SiO₂)
- On average 22 moles of C as CaCO₃ are precipitated for every 106 moles of C converted into phytoplankton biomass ("soft parts")
- Results in a Redfield Ratio of C_{org}:N:P:C_{CaCO3}:O₂ = 106:16:1:22:-138
- Production of CaCO₃ is important in air-sea CO₂ exchange because it removes carbon and alkalinity from surface water & transfers it to deep sea

Coccolithophorids & Air-Sea CO₂ Exchange (c.)

- Coccolithophorids alter the C_{organic} : $C_{\text{carbonate}}$ or "rain ratio" & increase surface pCO $_2$ during calcification, producing one molecule of CO $_2$ for each molecule of CaCO $_3$ fixed.
- Globally, the rain ratio from the surface ocean is ~ 4:1
- This ratio is largely controlled by the dominant taxon fixing carbon such that a shift in the phytoplankton community structure from calcifiers to silicifiers would affect the capacity of the biological pump
- For example, during a bloom of coccolithophorids, photosynthesis: calcification & the rain ratio can approach 1:1, & the effect of such high calcification rates has been found to change the air-sea gradient of CO₂.
- Considering that coccolithophorid blooms are responsible for up to 80% of surface ocean calcification, the 50% predicted decrease in potential surface coccolithophorid bloom areal extent may potentially lead to a significant increase in the POC:PIC ratio.
- By 2050 an increase in dissolved $\rm CO_2$ & a decrease in the concentration of $\rm CO_3^{2-}$ will result in an increase in $\rm CaCO_3$ dissolution.
- A decrease in calcification is a short-term negative feedback in the global carbon cycle.

IGLESIAS-RODRI'GUEZ ET AL. (2002): COCCOLITHOPHORIDS IN OCEAN CARBON CYCLE MODELS

Why is productivity so low in subtropical gyres?
Why is it so high in high latitude oceans? Along equator?
On coastal margins?

Ocean color/ SeaWifs: http://oceancolor.gsfc.nasa.gov/SeaWiFS/TEACHERS/sanctuary_7.html