Now that we have looked at the physical processes involved with the exchange of CO₂ between the atmosphere and the ocean let's turn to the chemical processes IPCC 2007 Fig. 7.10 # Chemical Processes Influencing Air-Sea Exchange of CO₂ - 1. Physical Processes - Air-sea gas exchange = f (wind speed, bubble injection, surfactants) - Ocean circulation - 2. Chemical Processes - o CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"] - Carbonate chemical equilibrium - 3. Biological Processes ["The Biological Pump"] - Photosynthesis & respiration - Calcium carbonate production # Chemical Processes Influencing Air-Sea Exchange of CO₂ - 1. Physical Processes - Air-sea gas exchange = f (wind speed, bubble injection, surfactants) - Ocean circulation #### 2. Chemical Processes - o CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"] - Carbonate chemical equilibrium - 3. Biological Processes ["The Biological Pump"] - Photosynthesis & respiration - Calcium carbonate production ### CO₂ Uptake by the Ocean: the Carbonate System - The ocean can take up CO₂ from the atmosphere in amounts that far exceed what would be expected based on solubility alone - The extra absorbing power is caused by the carbonate buffer system - •CO₂ gas dissolves in seawater to become aqueous CO₂ - $CO_2(g) \leftrightarrow CO_2(aq)$ Henry's Law describes the equilibrium between $CO_2(g) \& CO_2(aq)$ $K_H = [CO_2(aq)]/pCO_2$ (a function of T & S) - CO₂(aq) combines with water to produce carbonic acid CO₂(aq) + H₂O ↔ H₂CO₃ - \bullet At the pH of surface seawater (~8.2), carbonic acid rapidly dissociates into a hydrogen ion and a bicarbonate ion $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$ • The hydrogen ion then reacts with a carbonate ion to produce a second bicarbonate ion $H^+ + CO_3^2 \longleftrightarrow HCO_3^-$ #### CO₂ Uptake by the Ocean: DIC • Since only ~1% of CO₂(aq) exists as H₂CO₃ it is usually left out of the sum of dissolved inorganic carbon (DIC) species DIC = $CO_2(aq) + HCO_3^- + CO_3^{2-}$ • The molar ratio of these three species in seawater is about 1:100:10 600 800 1000 DIC 2200 (µmol/kg) Depth [m] Depth [m] Distance [km] ### CO₂ Uptake by the Ocean: Alkalinity ■ Another conservative quantity in seawater that is important for understanding the exchange of CO₂ between the atmosphere & the ocean is **Alkalinity**, the best definition of which I have ever read is: The negative charge deficit in seawater that is compensated by ions which can exist in more than one charge state. (Broecker, 2005) - Seawater must be electrically neutral - Though comprised primarily of ions with a fixed electrical charge*, such as the cations Na⁺, K⁺, Mg²⁺, Ca²⁺, and the anions Cl⁻ & SO₄²⁻, there is a *slight* deficit of negative charge, the alkalinity - That deficit is made up by protonating & deprotonating acids & bases until charge balance is achieved * I.e., pH-independent species; strong acids & bases Updated 2/9/09 ### CO₂ Uptake by the Ocean: Alkalinity (cont'd.) - The negative charge deficit is compensated by adding & removing protons (H $^+$) to ions that can exist in more than one charge state (pH-dependent species; weak acids & bases). Note: pH = -log[H $^+$] - Important for ocean CO_2 uptake are those acids & bases that can exist in more than one charge state in the pH range of seawater, ~7-9. - So a more precise definition of alkalinity than Broecker's would be: - "The negative charge deficit that is compensated by acids & bases that can exist in more than one charge state in the pH range of seawater." - Because of their high concentration in seawater and their tendency to protonate / deprotonate at pH 7-9, HCO_3^- , CO_3^{2-} , $B(OH)_3$, & $B(OH)_4^-$ are by far the most abundant such species Adapted from Broecker (2005), Emerson & Hedges (2007) Chap. 4. ### CO₂ Uptake by the Ocean: Alkalinity (cont'd) The high concentrations of carbonate & borate ions make HCO₃-, CO₃²⁻, B(OH)₃, & B(OH)₄- the most important contributors to alkalinity in seawater since its pH is ~8.2 # CO₂ Uptake by the Ocean: Alkalinity (cont'd.) | PROPERTIES | TROPICAL
SURFACE | DEEP
PACIFIC | UNITS | |---|-------------------------|--|---| | WATER DEPTH | 0 | 4000 | meters | | TEMPERATURE | 25.0 | 1.5 | °C | | SALINITY | 35.0 | 34.7 | g/kg | | P _{CO2} | 280 | 510 [*] | 10 ⁻⁶ atm | | NCD | 2216.0 | 2450.0 | 10 ⁻⁶ mol/kg | | ΣCO ₂ | 1858.0 | 2340.0 | 10 ⁻⁶ mol/kg | | (CO ₂) _{aq}
(HCO ₃ ⁻)
(CO ₃ ⁻) | 7.9
1601.5
248.5 | 29.9
2215.0
95.0 | 10 ⁻⁶ mol/kg
10 ⁻⁶ mol/kg
10 ⁻⁶ mol/kg | | Σ B
B(OH) ₃ ⁰
B(OH) ₄ - | 410.6
302.0
108.6 | 407.1
362.6
44.5 | 10 ⁻⁶ mol/kg
10 ⁻⁶ mol/kg
10 ⁻⁶ mol/kg | | (OH¯)
pH | 8.8
8.15 | 0.4
7.77
*AT SEA SURFACE
PRESSURE | 10 ⁻⁶ mol/kg | Borate contribution to Alkalinity: 108.6 / 2216 *100 = 4.9% · Thus in seawater: NCD = Alkalinity = $$HCO_3^- + 2*CO_3^{2-} + B(OH)_4^-$$ - More precise definitions of alkalinity exist that include more species - They include ions that contribute < 1% to alkalinity b/c they become protonated / deprotonated at: - o seawater pH, but have low & variable *concentrations* (e.g., - H₃SiO₄-, H₂PO₄-, HPO₄²⁻, PO₄³⁻) - o pH levels << 8 (e.g., Cl-, SO₄²⁻, F-) - In practice, even borate is left out since it is < 5% of alkalinity - The term *Carbonate Alkalinity* is then used as a simplifying approximation: Carbonate Alkalinity = HCO₃- + 2*CO₃²- Adapted from Broecker (2005) and Emerson & Hedges (2007) Chap. 4 ### How is Alkalinity Determined? - Alkalinity is measured by titration: strong acid is added to seawater until all proton acceptors have been protonated - "The precise definition of alkalinity of seawater is based on the method by which it is determined and the species that exchange protons during the titration." (Emerson & Hedges (2007) p. 4.10) - Operationally carbonate alkalinity is defined as the # of equivalents of acid required to bring a sample to the CO₂ endpoint, or equivalence point —I.e., when # moles acid added = moles HCO₃⁻ + 2*moles of CO₃² - Acid dropped from a burette into seawater until indicator changes color permanently-the endpoint. - At this equivalence point all the CO₃²⁻ & HCO₃- have been converted to CO₂ - The carbonate alkalinity is 3.8 meg/L ### Alkalinity in the Ocean Alkalinity is greater in the deep ocean than in the surface b/c Ca²⁺ ions are incorporated into CaCO₃* (removing alkalinity & NCD) in surface waters & released by dissolution of CaCO₃ in deep waters (adding alkalinity & NCD) ### Alkalinity (uMol or µeg/kg) WOCE Pacific Ocean Line 18 along 105°W Adapted from Broecker (2005). WOCE Pacific Ocean Atlas *A biological process we will discuss shortly ### CO₂ Uptake by the Ocean: the Revelle Factor - The amount of CO₂ the ocean can absorb from the atmosphere beyond the amount of CO₂ gas that can be dissolved in it is referred to as its buffering capacity - The buffering capacity of the ocean is quantified by the Revelle Factor - The RF (aka buffer factor) relates the fractional change in atmospheric pCO₂ to a fractional change in DIC (after reequilibration) - RF is directly proportional to the ratio of DIC : Alkalinity (see next page...) Figure adapted from Ed Boyle 12.842 Lecture Notes (2008) ### Buffering Capacity of the Ocean • Because Carbonate Alkalinity = $HCO_3^- + 2*CO_3^{2-}$ it is clear that the greater the alkalinity of a solution the greater its potential for neutralizing acid (H^+), such as CO_2 : $$CO_{2}(aq) + H_{2}O \leftrightarrow H_{2}CO_{3}$$ $$H_{2}CO_{3} \leftrightarrow H^{+} + HCO_{3}^{-}$$ $$H^{+} + CO_{3}^{2-} \leftrightarrow HCO_{3}^{-}$$ $$CO_{2}(aq) + H_{2}O + CO_{3}^{2-} \leftrightarrow 2HCO_{3}^{-}$$ - \bullet The more $\text{CO}_3^{\ 2\text{-}},$ or Alkalinity, contained in the water, the more CO_2 (acid) it will be able to absorb - But the total amount of DIC is also a factor, because with low concentrations of DIC there cannot be large amounts of ${\rm CO_3}^2$ to neutralize ${\rm CO_2}$ at any pH - That is why the Revelle factor is proportional to (DIC / Alkalinity). Low values of either quantity imply greater capacity to buffer added CO₂. ### Equilibration Time for Atmospheric Gases in the Ocean Mixed Layer - Change in pCO₂ causes equal change in CO₂(aq) - Revelle factor: fractional change in pCO₂ is ~10x greater then DIC change - Since CO₂(aq)=0.5% of DIC it takes 10/0.5, or 20x longer to equilibrate DIC then to equilibrate CO₂(aq) - Equilibration time =(100m / 2000m yr⁻¹)*20=1yr ### Equilibration Time for Atmospheric Gases in the Ocean Mixed Layer ### carbon isotope equilibration (C13, C14) - \bullet Total DIC must equilibrate with atm. CO_2 - 1m² of upper 100m of ocean contains: 10⁵kg water * (2000*10⁻⁶mol C/kg water) = 200 moles C - CO₂ gas exchange rate = 20 mol/m²/yr (see prev. lec.) - Equilibration time - $= (200 \text{ mol}) / (20 \text{ mol/m}^2/\text{yr})$ - = 10yr Now that we have looked at the physical & chemical processes involved with the exchange of CO₂ between the atmosphere & the ocean let's turn to the biological processes IPCC 2007 Fig. 7.10 ### Biological Processes Influencing Air-Sea Exchange of CO₂ - 1. Physical Processes - Air-sea gas exchange = f (wind speed, bubble injection, surfactants) - Ocean circulation - Chemical Processes - CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"] - Carbonate chemical equilibrium - 3. Biological Processes ["The Biological Pump"] - Photosynthesis & respiration - o Calcium carbonate production #### The "Biological Carbon Pump" • The biologically mediated transfer of CO2 & nutrients from the surface to the deep ocean The elemental 0 m composition of $CO_2 + H_2O \rightarrow CH_2O + O_2$ (simplified photosynthetic eqn.) phytoplankton in the ocean is amazingly $106CO_2 + 16HNO_3 + H_3PO_4 + 122H_2O \rightarrow (CH_2O) + 106(NH_3) + 16(H_3PO_4) + 138O_2$ constant, as 1st noted by A.C. Redfield* 100 Surface Ocean This "Redfield ratio" Settling of characterizes both Upwelling of organic matter phytoplankton & nutrients 1000 seawater! · Grazing of $CH_2O + O_2 \rightarrow CO_2 + H_2O$ (simplified respiration eqn.) phytoplankton by zooplankton produces fecal pellets that sink & $(CH_2O)106(NH_3)16(H_3PO_4)+138O_2 \rightarrow 106CO_2+16HNO_3+H_3PO_4+122H_2O_4$ transport algal biomass to the deep sea where it is "remineralized" back Deep Ocean to inorganic nutrients 4000 ### Hard vs. Soft Parts Coccolithophorid (CaCO₃) Diatom (SiO₂) - Some organisms precipitate inorganic shells ("hard parts") out of calcium carbonate & silica, the overwhelming majority being coccolithophorids (CaCO₃) & diatoms (SiO₂) - On average 22 moles of C as CaCO₃ are precipitated for every 106 moles of C converted into phytoplankton biomass ("soft parts") - Results in a Redfield Ratio of C_{org}:N:P:C_{CaCO3}:O₂ = 106:16:1:22:-138 - Production of CaCO₃ is important in air-sea CO₂ exchange because it removes carbon and alkalinity from surface water & transfers it to deep sea ### Coccolithophorids & Air-Sea CO₂ Exchange (c.) - Coccolithophorids alter the C_{organic} : $C_{\text{carbonate}}$ or "rain ratio" & increase surface pCO $_2$ during calcification, producing one molecule of CO $_2$ for each molecule of CaCO $_3$ fixed. - Globally, the rain ratio from the surface ocean is ~ 4:1 - This ratio is largely controlled by the dominant taxon fixing carbon such that a shift in the phytoplankton community structure from calcifiers to silicifiers would affect the capacity of the biological pump - For example, during a bloom of coccolithophorids, photosynthesis: calcification & the rain ratio can approach 1:1, & the effect of such high calcification rates has been found to change the air-sea gradient of CO₂. - Considering that coccolithophorid blooms are responsible for up to 80% of surface ocean calcification, the 50% predicted decrease in potential surface coccolithophorid bloom areal extent may potentially lead to a significant increase in the POC:PIC ratio. - By 2050 an increase in dissolved $\rm CO_2$ & a decrease in the concentration of $\rm CO_3^{2-}$ will result in an increase in $\rm CaCO_3$ dissolution. - A decrease in calcification is a short-term negative feedback in the global carbon cycle. IGLESIAS-RODRI'GUEZ ET AL. (2002): COCCOLITHOPHORIDS IN OCEAN CARBON CYCLE MODELS Why is productivity so low in subtropical gyres? Why is it so high in high latitude oceans? Along equator? On coastal margins? Ocean color/ SeaWifs: http://oceancolor.gsfc.nasa.gov/SeaWiFS/TEACHERS/sanctuary_7.html