Now that we have looked at the physical processes involved with the exchange of CO₂ between the atmosphere and the ocean let’s turn to the chemical processes.

Chemical Processes Influencing Air-Sea Exchange of CO₂

1. **Physical Processes**
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation

2. **Chemical Processes**
 - CO₂ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - Carbonate chemical equilibrium

3. **Biological Processes ["The Biological Pump"]**
 - Photosynthesis & respiration
 - Calcium carbonate production
Solubility of Gases as a Function of Temperature

- Solubility of all gases decreases with increasing T
- Differences result from molecular interactions between gas & water

CO$_2$ Solubility is a Function of Temperature

- Demonstrations of the temperature dependence

- Solubility decreases as T increases
- pCO$_2$ increases as T increases (implying the liquid can hold less of the gas at higher T, resulting in higher gas pressure)
Gas Solubility Decreases as Salinity Increases

Natural Range of Seawater NaCl (Salinity)

CO₂ is more soluble in cold waters than in warm waters (the thermal pump), & more soluble in fresher waters than saltier waters (the salt pump).

- If alkalinity (see following discussion) were uniform throughout the ocean & if both cold & warm surface waters equilibrated their \(p_{CO₂} \) with the atmosphere, then cold surface waters would have a higher dissolved CO₂ content than warm surface waters.

- As these cold surface waters circulate into the deep interior of the ocean, deep waters will have more CO₂ than warm surface waters.
Chemical Processes Influencing Air-Sea Exchange of CO$_2$

1. Physical Processes
 - Air-sea gas exchange = f (wind speed, bubble injection, surfactants)
 - Ocean circulation

2. Chemical Processes
 - CO$_2$ solubility = f (temperature, salinity) ["The Solubility Pump"]
 - Carbonate chemical equilibrium

3. Biological Processes ["The Biological Pump"]
 - Photosynthesis & respiration
 - Calcium carbonate production

CO$_2$ Uptake by the Ocean: the Carbonate System

- The ocean can take up CO$_2$ from the atmosphere in amounts that far exceed what would be expected based on solubility alone
- The extra absorbing power is caused by the carbonate buffer system

- CO$_2$ gas dissolves in seawater to become aqueous CO$_2$
 \[\text{CO}_2(g) \leftrightarrow \text{CO}_2(aq) \]
- Henry’s Law describes the equilibrium between CO$_2(g)$ & CO$_2(aq)$
 \[K_H = \frac{[\text{CO}_2(aq)]}{p\text{CO}_2} \quad \text{(a function of T & S)} \]
- CO$_2(aq)$ combines with water to produce carbonic acid
 \[\text{CO}_2(aq) + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \]
- At the pH of surface seawater (~8.2), carbonic acid rapidly dissociates into a hydrogen ion and a bicarbonate ion
 \[\text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^- \]
- The hydrogen ion then reacts with a carbonate ion to produce a second bicarbonate ion
 \[\text{H}^+ + \text{CO}_3^{2-} \leftrightarrow \text{HCO}_3^- \]
CO₂ Uptake by the Ocean: DIC

- Since only ~1% of CO₂(aq) exists as H₂CO₃ it is usually left out of the sum of dissolved inorganic carbon (DIC) species

\[
\text{DIC} = \text{CO}_2(\text{aq}) + \text{HCO}_3^- + \text{CO}_3^{2-}
\]

- The molar ratio of these three species in seawater is about 1 : 100 : 10

CO₂ Uptake by the Ocean: Conservative Quantities

- DIC is a **conservative** quantity in seawater, meaning
 - Its concentration can only be changed by mixing & advection
 - It can be mixed linearly
 - Non-conservative properties (e.g., O₂ & PO₄³⁻) are altered by biological & chemical processes

- An example would be mixing in an estuary, where the DIC concentration changes linearly from the low value in rivers to the high value in seawater:
*** Start Here Tues 2/10/09 ***

Clarifications

Eddies

• Small-scale (~10^0-10^2 km), time-varying components of the circulation
• Spatio-temporal integrations produce the large-scale “steady” flows
• Contain 90-99% of the kinetic energy of the flow (Wunsch, 2004, 2007, in press)
• Ubiquity & importance recognized since ’70s; widely observed since ’90s

Without eddies (1° grid size)

With eddies (1/6° grid size)

http://www.cre.noaa.gov/climate/images/modeling_oceansim.jpg
- Another conservative quantity in seawater that is important for understanding the exchange of CO$_2$ between the atmosphere & the ocean is **Alkalinity**, the best definition of which I have ever read is:

 The negative charge deficit in seawater that is compensated by ions which can exist in more than one charge state. (Broecker, 2005)

- Seawater must be **electrically neutral**
- Though comprised primarily of ions with a fixed electrical charge, such as the cations Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$, and the anions Cl$^-$ & SO$_4^{2-}$, there is a slight deficit of negative charge, the **alkalinity**

 - That deficit is made up by protonating & deprotonating acids & bases until charge balance is achieved.
CO₂ Uptake by the Ocean: Alkalinity (cont’d.)

• pH is a 3rd important quantity in determining ocean uptake of CO₂

\[\text{pH} = -\log[H^+] \]

• The NCD is compensated by adding & removing protons (H⁺) to ions that can exist in more than one charge state

• Important for ocean CO₂ uptake are acids & bases that can exist in more than one charge state in the pH range of seawater, ~7-9.

• So a more precise definition of alkalinity would be:

“If the negative charge deficit that is compensated by acids & bases that can exist in more than one charge state in the pH range of seawater.”

• Because of their high concentration in seawater and their tendency to protonate / deprotonate at pH 7-9, HCO₃⁻, CO₃²⁻, B(OH)₃, & B(OH)₄⁻ are by far the most abundant such species

CO₂ Uptake by the Ocean: Alkalinity (cont’d)

• The high concentrations of carbonate & borate ions make HCO₃⁻, CO₃²⁻, B(OH)₃, & B(OH)₄⁻ the most important contributors to alkalinity in seawater since its pH is ~8.2

CO₂ Uptake by the Ocean: Alkalinity (cont’d.)

Thus in seawater:

\[
\text{NCD} = \text{Alkalinity} = \text{HCO}_3^- + 2*\text{CO}_3^{2-} + \text{B(OH)}_4^-
\]

More precise definitions of alkalinity exist that include more species:

- They include ions that contribute < 1% to alkalinity because they become protonated/deprotonated at:
 - seawater pH, but have low &/or variable concentrations (e.g., H₃SiO₄⁻, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻, OH⁻)
 - pH levels << 8 (e.g., Cl⁻, SO₄²⁻, F⁻)
- In practice, even borate is left out since it comprises < 5% of alkalinity
- The term Carbonate Alkalinity is then used as a simplifying approximation:
 \[
 \text{Carbonate Alkalinity} = \text{HCO}_3^- + 2*\text{CO}_3^{2-}
 \]

Borate contribution to Alkalinity:

\[
\frac{108.6}{2216} \times 100 = 4.9\%
\]

Adapted from Broecker (2005) and Emerson & Hedges (2007) Chap. 4

How is Alkalinity Determined?

- Alkalinity is measured by titration: strong acid is added to seawater until all proton acceptors have been protonated
- “The precise definition of alkalinity of seawater is based on the method by which it is determined and the species that exchange protons during the titration.” (Emerson & Hedges (2007) p. 4.10)
- Operationally carbonate alkalinity is defined as the # of equivalents of acid required to bring a sample to the CO₂ endpoint, or equivalence point —i.e., when # moles acid added = moles HCO₃⁻ + 2*moles of CO₃²⁻.
 - Acid dropped from a burette into seawater until indicator changes color permanently—the endpoint.
 - At this equivalence point, all the CO₃²⁻ & HCO₃⁻ have been converted to CO₂.
 - The carbonate alkalinity is 3.8 meq/L
Alkalinity Titration of Seawater with Strong Acid

\[\text{Alkalinity in the Ocean} \]

- Alkalinity is greater in the deep ocean than in the surface b/c Ca\(^{2+}\) ions are incorporated into CaCO\(_3\)\(^*\) (removing alkalinity & NCD) in surface waters & released by dissolution of CaCO\(_3\) in deep waters (adding alkalinity & NCD)

\[\text{Alkalinity} \ (\text{uMol or } \mu\text{eq/kg}) \]

WOCE Pacific Ocean
Line 18 along 105°W

* A biological process we will discuss shortly
CO₂ Uptake by the Ocean: the Revelle Factor

- The amount of CO₂ the ocean can absorb from the atmosphere beyond the amount of CO₂ gas that can be dissolved in it is referred to as its buffering capacity.
- The buffering capacity of the ocean is quantified by the Revelle Factor.
- The RF (aka buffer factor) relates the fractional change in atmospheric pCO₂ to a fractional change in DIC (after re-equilibration).
- RF is directly proportional to the ratio of DIC : Alkalinity.

Lower RF = Greater buffering capacity

Buffering Capacity of the Ocean

- Because Carbonate Alkalinity = HCO₃⁻ + 2*CO₃²⁻ it is clear that the greater the alkalinity of a solution the greater its potential for neutralizing acid (H⁺), such as CO₂:

- The more CO₃²⁻, or Alkalinity, contained in the water, the more CO₂ (acid) it will be able to absorb.
- But the total amount of DIC is also a factor, because with low concentrations of DIC there cannot be large amounts of CO₃²⁻ to neutralize CO₂ at any pH.
- That is why the Revelle factor is proportional to (DIC / Alkalinity). Low values of RF of DIC/Alk imply greater capacity to buffer added CO₂. (Higher Alk = Lower RF = Higher buffering capacity.)
Buffering Capacity of the Ocean: The Revelle Factor

1994 distribution of the Revelle factor averaged over upper 50m of water.

- Low RFs occur in warm tropical-subtropical waters; high RFs in cold high latitude waters
- The capacity for seawater to take up CO$_2$ from the atmosphere is inversely proportional to the RF
- Hence, the lower the RF, the higher the oceanic equilibrium concentration of CO$_2$ for a given atmospheric CO$_2$ increase
- North Pacific surface waters have a higher RF at comparable latitudes & consequently lower anthropogenic CO$_2$ concentrations
- This difference results from North Pacific alkalinity values about 100 mol/kg lower than in the North Atlantic
- Current RFs are about one unit higher than in the preindustrial ocean.

Equilibration Time for Atmospheric Gases in Ocean Mixed Layer

Simple Gas Exchange (e.g. O$_2$, Ar)

- For mixed layer depth of 100m & piston velocity of 2000 m/yr
- Equilibration time = 100m/2000m yr$^{-1}$ = 0.05yr = 18d
Equilibration Time for Atmospheric Gases in the Ocean Mixed Layer

- **pCO2 equilibration**
 - ~1 year
 - Change in pCO2 causes equal change in CO2(aq)
 - Revelle factor: fractional change in pCO2 is ~10x greater than DIC change
 - Since CO2(aq)=0.5% of DIC it takes 10/0.5, or 20x longer to equilibrate DIC then to equilibrate CO2(aq)
 - Equilibration time = (100m/2000m yr⁻¹) * 20 = 1yr

- **Total DIC must equilibrate with atm. CO2**
 - Total DIC must equilibrate with atm. CO2
 - 1m² of upper 100m of ocean contains: 10⁵ kg water * (2000 * 10⁻⁶ mol C/kg water) = 200 moles C
 - CO2 gas exchange rate = 20 mol/m²/yr (see prev. lec.)
 - Equilibration time = (200 mol) / (20 mol/m²/yr) = 10yr
Now that we have looked at the physical & chemical processes involved with the exchange of CO$_2$ between the atmosphere & the ocean let’s turn to the biological processes.

![IPCC 2007 Fig. 7.10](image)

Biological Processes Influencing Air-Sea Exchange of CO$_2$

1. **Physical Processes**
 - Air-sea gas exchange $= f$ (wind speed, bubble injection, surfactants)
 - Ocean circulation

2. **Chemical Processes**
 - CO$_2$ solubility $= f$ (temperature, salinity) ["The Solubility Pump"]
 - Carbonate chemical equilibrium

3. **Biological Processes ["The Biological Pump"]**
 - Photosynthesis & respiration
 - Calcium carbonate production
The “Biological Carbon Pump”

- The biologically mediated transfer of CO$_2$ & nutrients from the surface to the deep ocean

The elemental composition of phytoplankton in the ocean is amazingly constant, as 1st noted by A.C. Redfield*

This “Redfield ratio” characterizes both phytoplankton & seawater!

Grazing of phytoplankton by zooplankton produces fecal pellets that sink & transport algal biomass to the deep sea where it is “remineralized” back to inorganic nutrients.

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CH}_2\text{O} + \text{O}_2 \quad \text{(simplified photosynthetic eqn.)}
\]

\[
106\text{CO}_2 + 16\text{HNO}_3 + \text{H}_3\text{PO}_4 + 122\text{H}_2\text{O} \rightarrow (\text{CH}_2\text{O})_{106}(\text{NH}_3)_{16}(\text{H}_3\text{PO}_4) + 138\text{O}_2
\]

Deep Ocean

Surface Ocean

Upwelling of nutrients

Settling of organic matter

\[
\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \quad \text{(simplified respiration eqn.)}
\]

\[
(\text{CH}_2\text{O})_{106}(\text{NH}_3)_{16}(\text{H}_3\text{PO}_4) + 138\text{O}_2 \rightarrow 106\text{CO}_2 + 16\text{HNO}_3 + \text{H}_3\text{PO}_4 + 122\text{H}_2\text{O}
\]

A More Realistic View of Biological Processes in the Surface Ocean “Box”

Emerson & Hedges (2007) Chem. Oceanogr., Fig. 6.5

POM = Particulate Organic Matter
DOM = Dissolved Organic Matter
Biological Pump Effect on Nutrient Distributions

- Nutrients such as N & P stripped out of surface water by photosynthesis
 - Consuming CO$_2$(aq)
 - Producing O$_2$
- Transported to deep sea by sinking fecal pellets
- Released back into deep water during decomposition by bacteria (remineralization)
 - Consuming O$_2$

Note that O$_2$ has mirror-image profile of PO$_4^{3-}$

Combined Effect of the Biological Pump & Ocean Circulation

\[\text{PO}_4^{3-} + \text{MOC: John Marshall, MIT.} \]

\[\text{Biological Pump + Ocean Circulation Effect on Phosphate} \]

- Oldest water in ocean accumulates most remineralized \(\text{PO}_4^{3-} \), the ultimate source of which was photosynthesis in the global surface ocean.
Oldest water in ocean accumulates most respired CO$_2$, the ultimate source of which was photosynthesis in the global surface ocean.

- Oldest water in ocean is most impoverished in O$_2$ because 138 moles of O$_2$ are consumed per mole of PO$_4^{3-}$ liberated during organic matter decomposition.
- From the Redfield ratio of C:N:P:O$_2$ of 106:16:1:-138
Global Nitrate & Water Age at 3000 m

From Key et al. (2005) in Emerson & Hedges (2007), Fig. 6.16.

The best visual depiction of the combined effect of the biological pump & ocean circulation I have seen!

From Key et al. (2005) in Emerson & Hedges (2007), Fig. 6.16.
Hard vs. Soft Parts

- Some organisms precipitate inorganic shells ("hard parts") out of calcium carbonate & silica, the overwhelming majority being coccolithophorids (CaCO$_3$) & diatoms (SiO$_2$)
- On average 22 moles of C as CaCO$_3$ are precipitated for every 106 moles of C converted into phytoplankton biomass ("soft parts")
- Results in a Redfield Ratio of C$_{org}$:N:P:C$_{CaCO3}$:O$_2$ = 106:16:1:22:-138
- Production of CaCO$_3$ is important in air-sea CO$_2$ exchange because it removes carbon and alkalinity from surface water & transfers it to deep sea

Globally the Production of CaCO$_3$ is 0.6 Gt C/yr
(~3% of global marine C fixation)

- SeaWiFS images & Composite
- 50% reduction in coccolith blooms expected in N. Atl (their largest habitat) by 2100 A.D. owing to ocean acidification

Coccolithophorids & Air-Sea CO₂ Exchange (c.)

- Coccolithophorids alter the Corganic:Ccarbonate, or “rain ratio” & increase surface pCO₂ during calcification, producing one molecule of CO₂ for each molecule of CaCO₃ fixed.
- Globally, the rain ratio from the surface ocean is ~ 4:1
- This ratio is largely controlled by the dominant taxon fixing carbon such that a shift in the phytoplankton community structure from calcifiers to silicifiers would affect the capacity of the biological pump
- For example, during a bloom of coccolithophorids, photosynthesis: calcification & the rain ratio can approach 1:1, & the effect of such high calcification rates has been found to change the air-sea gradient of CO₂.
- Considering that coccolithophorid blooms are responsible for up to 80% of surface ocean calcification, the 50% predicted decrease in potential surface coccolithophorid bloom areal extent may potentially lead to a significant increase in the POC:PIC ratio.
- By 2050 an increase in dissolved CO₂ & a decrease in the concentration of CO₃²⁻ will result in an increase in CaCO₃ dissolution.
- A decrease in calcification is a short-term negative feedback in the global carbon cycle.

Ratio of Hard to Soft Parts Produced & Exported from the Surface Ocean Influences pCO₂

- Vector diagrams demonstrate the effect of biological & physical processes on surface ocean pCO₂:
 - Gas exchange
 - Proportionally changes ocean DIC w/ no effect on alkalinity
 - "Soft tissue pump"
 - Photosynthesis reduces DIC & increases alkalinity with a slope of C/N=-106/16=-6.6
 - "Carbonate pump"
 - CaCO₃ production reduces alkalinity by 2 units per unit decrease in DIC b/c CO₃²⁻ contributes 2 moles of alkalinity per mole of DIC

Alkalinity = HCO₃⁻ + 2*CO₃²⁻
DIC = CO₂(aq) + HCO₃⁻ + CO₃²⁻

*Debate continues over the “true” Redfield ratio, with this book taking C:N = 117:16
Sarmiento & Gruber (2007) Fig. 8.3.5
Why is productivity so low in subtropical gyres?
Why is it so high in high latitude oceans? Along equator? On coastal margins?

Ocean color/SeaWiFS: http://oceancolor.gsfc.nasa.gov/SeaWiFS/TEACHERS/sanctuary_7.html