PCC 588 - January 6 and 8 2009

Winter 2009: ATMS/OCN/ESS 588 The Global Carbon Cycle and Greenhouse Gases

T,Th 12:00-1:20 pm OSB 425

Course Goals

The course focuses on factors controlling the global cycle of carbon and the greenhouse gases (CO_2 , CH_4 , N_2O , O_3 and halocarbons).

- Abundance and distribution of carbon and greenhouse gases
- Physical, chemical and biological mechanisms that control oceanatmosphere and terrestrial-atmosphere exchange of carbon and greenhouse gases
- The geologic evidence for climate change linked to greenhouse gases
- The fate of anthropogenic greenhouse gases, their impact on climate and strategies for sequestration of anthropogenic gases

Course Structure

- Greenhouse gases and radiative forcing (1.5 week)
- Non-CO₂ greenhouse gases and aerosols (2 weeks)
- Carbon cycle: past, present, future (2.5 weeks)
- Anthropogenic perturbation to C-cycle (1.5 week)
- Geoengineering solutions (1 week)
- Class presentations (1 week)

3 Problem sets (30%); Midterm exam (25%); Participation in class and during paper discussions (15%); Term paper & oral presentation (30%)

The IPCC Reports

- Intergovernmental Panel on Climate Change (IPCC) established in 1988 by WMO and UNEP
- → assess available scientific and socio-economic information on climate change and its impacts and on the options mitigation and adaptation
- Report every 5 years: 1991, 1996, 2001, and 2007
- Compiled by hundreds of scientists, reviewed by scientists, governments and experts: consensus document

http://www.ipcc.ch/ipccreports/assessments-reports.htm

The Scientific Basis

Today and Thursday: From greenhouse gases to climate change ...

- The climate system: what controls the temperature of the Earth?
- Greenhouse effect.
- Radiative forcing. Global warming potential. CO₂equivalent emissions.
- Relating radiative forcing to temperature changes.

Reading for this week (will be on class web site):

IPCC WG1 Summary for Policymakers (2007) → in-class discussion next Tues! http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf

For more information:

- * IPCC WG1 Technical Summary (2007)
- * Radiation tutorial/refresher: Chapter 7 in Jacob's "Introduction to Atmospheric Chemistry"

Total Solar Radiation Received By Earth

• Solar constant for Earth: $F_s = 1368 \text{ W m}^{-2}$ (Note: 1 W = 1 J s⁻¹)

• Solar radiation received top of atmosphere unit area of sphere = (1368) x (π r_e²)/(4 π r_e²) = 342 W m⁻²

A No-Atmosphere Earth

- Assume 30% of incoming solar energy is reflected by surface (albedo of surface = 0.3)
- Energy absorbed by surface = 70% of 342 W m^{-2} = 239.4 W m^{-2}
- · Balanced by energy emitted by surface
- Stefan-Boltzmann law: Energy emitted = σ T⁴ ;(σ =5.67 x 10⁻⁸ W m⁻² K⁻⁴)
- 239.4 W m⁻² = σ T⁴ \rightarrow T = 255 K (-18°C)
 - \rightarrow much less than average temperature of 288 K (15°C)
- What is missing?
 - → Absorption of terrestrial radiation by the atmosphere

Not all molecules are equal...

Question:

Consider CO_2 , CH_4 , N_2O , O_3 , and CFCs: on a per molecule basis, which do you expect to be most effective at absorbing infrared radiation? Least effective? Why?

- Solar radiation at surface = 70% of 342 W m^{-2} = 239.4 W m^{-2}
- Infrared flux from surface = σT_0^4
- Absorption of infrared flux by atmosphere = $f \sigma T_0^4$
- Kirchhoff's law: efficiency of absorption = efficiency of emission
- IR flux from atmospheric layer = $f \sigma T_1^4$ (up and down)

Concept of Radiative Forcing

Measure of the climatic impact of a greenhouse gas or other forcing agent

- Radiative forcing = change in radiation balance (flux in minus out) at the top of the atmosphere due to a change in amount of greenhouse gas before the system relaxes to equilibrium. ΔF (W m $^{-2}$)
- Consider atmosphere in radiation balance:
 - ➢ If concentration of a greenhouse gas increases and nothing else changes → outgoing terrestrial radiation decreases

IPCC definition of radiative forcing

IPCC definition

"The radiative forcing of the surface-troposphere system due to the perturbation in or the introduction of an agent (say, a change in greenhouse gas concentrations) is the change in net (down minus up) irradiance (solar plus long-wave; in Wm⁻²) at the tropopause AFTER allowing for stratospheric temperatures to readjust to radiative equilibrium, but with surface and tropospheric temperatures and state held fixed at the unperturbed values."

Why is radiative forcing useful?

- Simple measure to quantify and rank the many different influences on climate change.
- · Robust. can be calculated with some accuracy
- Additive (globally/regionally/locally)
- Is used to calculate surface temperature changes, but avoids issue of climate sensitivity
- Near-quantitative comparison of anthropogenic forcing agents

Human Impacts on the Climate System Radiative forcing of climate between 1750 and 2006

Radiative forcing gives firstorder estimate of the relative climatic forcing of anthropogenic gases, aerosols, land-use change

IPCC, Chap 2

GLOBAL WARMING POTENTIAL (GWP): foundation for climate policy

• The GWP measures the integrated radiative forcing over a time horizon Δt from the injection of 1 kg of a species X at time $t_{o'}$ relative to CO₂:

$$GWP = \frac{\int_{t_o + \Delta t}^{t_o + \Delta t} \Delta F_{1 \text{ kg X}} dt}{\int_{t_o + \Delta t}^{t_o + \Delta t} \Delta F_{1 \text{ kg CO}_2} dt}$$

Gas	Mixing ratios	Lifetime	GWP for time horizon		
	(ppm) in 2005	(years)	20 years	100 years	500 years
CO ₂	379	~200	1	1	1
CH ₄	1.774	12	72	25	7.6
N ₂ O	0.319	114	289	298	153
CFC-12 (CF ₂ Cl ₂)	0.000538	100	11,000	10,900	5,200
SF ₆	0.0000056	3200	16,300	22,800	32,600

CO₂ equivalent emissions

- Amount of CO₂ that would have the same radiative forcing as an emitted amount of a GHG for a 100 year horizon
- = time integrated radiative forcing
- Example: Emitting 1 million ton of CH₄ (GWP(100 years) = 25) is the same as emitting 25 million tons of CO₂ or 25 Gt CO₂-equivalent.
- Question: are the impacts really the same?

Radiative Forcing and Temperature Change

- Response of system to energy imbalance: $\rightarrow T_0$ and T_1 increase
- → may cause other greenhouse gases to change
- \rightarrow T₀ and T₁ may increase or decrease depending on internal climate feedbacks
- \rightarrow $\Delta f \rightarrow \Delta T \rightarrow$ etc... \rightarrow Ultimately, the system gets back in balance
- Radiative forcing is only a measure of initial change in outgoing terrestrial radiation
- How do we relate radiative forcing to temperature change?

 $\Delta T_0 = \lambda \Delta F$,

 ΔT_0 : Surface Temperature change (°C) ΔF: Radiative forcing (W/m²) λ: Climate sensitivity (°C per W/m²)

•Climate models (GCMs) indicate that λ ranges from 0.3 to 1.4 °C per W/m². On average $\lambda \sim 0.75$ °C per W/m²

Feedbacks

• water vapor feedback: positive.

- ice-albedo feedback: positive.
- cloud feedbacks: positive or negative? potentially large (clouds can reflect solar radiation or absorb IR radiation depending on their height, thickness and microphysical properties)
- land surface feedback: positive (deforestation and hydrological cycle)

