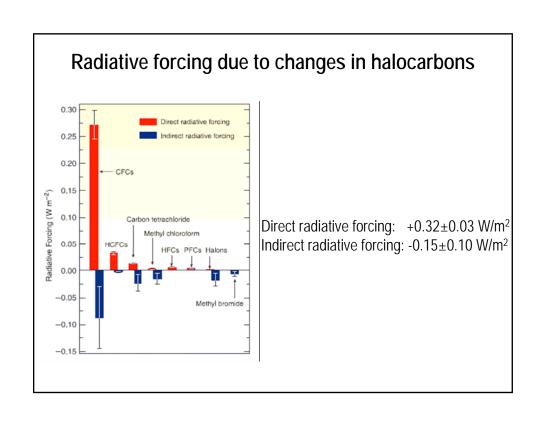

Industrial Designation			Radiative	Global Warming Potential for Given Time Horizon			
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR‡ (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See belowa	b1.4x10 ⁻⁵	1	1	1	1
Methane ^o	CH ₄	12º	3.7x10-4	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	153
Substances controlled l	y the Montreal Protoco	1					
CFC-11	CCl₃F	45	0.25	3,800	6,730	4,750	1,620
CFC-12	CCI ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400
CFC-113	CCI ₂ FCCIF ₂	85	0.3	4,800	6,540	6,130	2,700
CFC-114	CCIF ₂ CCIF ₂	300	0.31		8,040	10,000	8,730
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,990
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,760
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	575
Halon-2402	CBrF ₂ CBrF ₂	20	0.33		3,680	1,640	503
Carbon tetrachloride	CCI ₄	26	0.13	1,400	2,700	1,400	435
Methyl bromide	CH ₃ Br	0.7	0.01		17	5	1
Methyl chloroform	CH ₃ CCl ₃	5	0.06		506	146	45
HCFC-22	CHCIF ₂	12	0.2	1,500	5,160	1,810	549
HCFC-123	CHCl₂CF ₃	1.3	0.14	90	273	77	24
HCFC-124	CHCIFCF ₃	5.8	0.22	470	2,070	609	185
HCFC-141b	CH ₃ CCl₂F	9.3	0.14		2,250	725	220
HCFC-142b	CH ₃ CCIF ₂	17.9	0.2	1,800	5,490	2,310	705
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	1.9	0.2		429	122	37
(2007) Table	2 1 /						

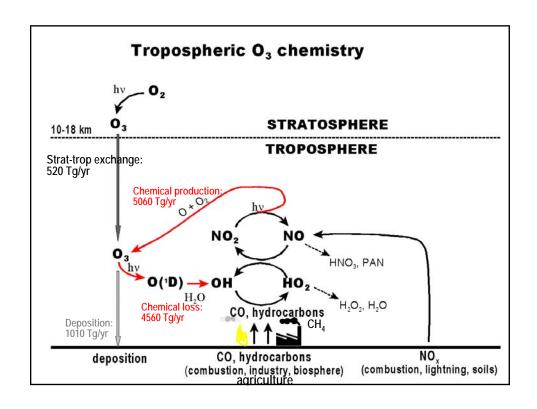

Industrial Designation			Radiative		bal Warmi Given Tin	ng Potenti ne Horizon	al for
or Common Name (years)		Lifetime (years)	Efficiency (W m-2 ppb-1)	SAR‡ (100-yr)	20-yr	100-yr	500-y
Hydrofluorocarbons							
HFC-23	CHF ₃	270	0.19	11,700	12,000	14,800	12,20
HFC-32	CH ₂ F ₂	4.9	0.11	650	2,330	675	20
HFC-125	CHF ₂ CF ₃	29	0.23	2,800	6,350	3,500	1,10
HFC-134a	CH ₂ FCF ₃	14	0.16	1,300	3,830	1,430	43
HFC-143a	CH ₃ CF ₃	52	0.13	3,800	5,890	4,470	1,59
HFC-152a	CH ₃ CHF ₂	1.4	0.09	140	437	124	3
HFC-227ea	CF ₃ CHFCF ₃	34.2	0.26	2,900	5,310	3,220	1,04
HFC-236fa	CF ₃ CH ₂ CF ₃	240	0.28	6,300	8,100	9,810	7,66
HFC-245fa	CHF ₂ CH ₂ CF ₃	7.6	0.28		3,380	1030	31
HFC-365mfc	CH ₃ CF ₂ CH ₂ CF ₃	8.6	0.21		2,520	794	24
HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	15.9	0.4	1,300	4,140	1,640	50
Perfluorinated compou	nds						
Sulphur hexafluoride	SF ₆	3,200	0.52	23,900	16,300	22,800	32,60
Nitrogen trifluoride	NF ₃	740	0.21		12,300	17,200	20,70
PFC-14	CF ₄	50,000	0.10	6,500	5,210	7,390	11,20
PFC-116	C ₂ F ₆	10,000	0.26	9,200	8,630	12,200	18,20
PFC-218	C ₃ F ₈	2,600	0.26	7,000	6,310	8,830	12,500
PFC-318	c-C ₄ F ₈	3,200	0.32	8,700	7,310	10,300	14,700
PFC-3-1-10	C ₄ F ₁₀	2,600	0.33	7,000	6,330	8,860	12,500
PFC-4-1-12	C ₅ F ₁₂	4,100	0.41		6,510	9,160	13,300
PFC-5-1-14	C ₆ F ₁₄	3,200	0.49	7,400	6,600	9,300	13,300
PFC-9-1-18	C ₁₀ F ₁₈	>1,000d	0.56		>5,500	>7,500	>9,500
trifluoromethyl sulphur pentafluoride	SF ₅ CF ₃	800	0.57		13,200	17,700	21,20

Radiative forcing due to changes in ozone since pre-industrial times

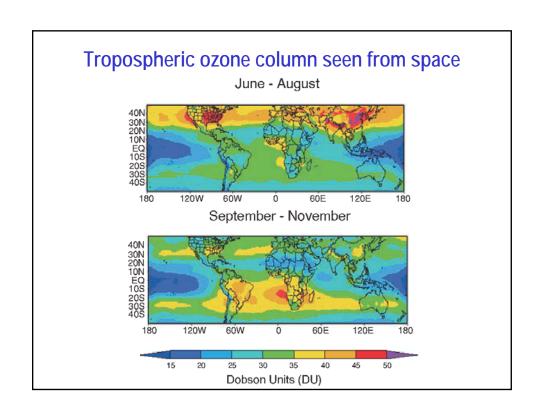
- Observed losses of stratospheric ozone layer over last two decades (~5%): → negative forcing (cooling) of -0.05 W m⁻²
- Increase in **tropospheric ozone** since pre-industrial times (by 35-50%):
- → positive forcing (warming) of 0.35 W m⁻²

 40 km

 Pre-industrial O₃

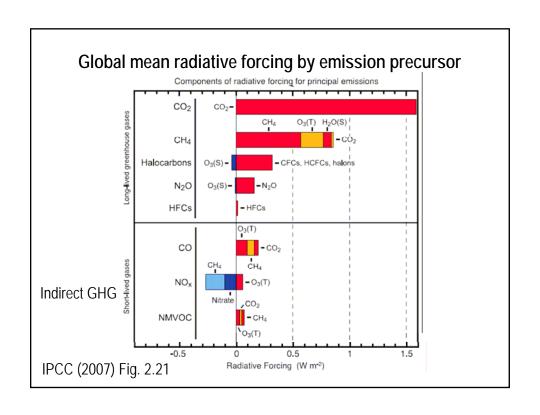

 25 km

 Today's O₃


 stratosphere

 O₃ in 2100?

 troposphere



Sources	CH ₄ (Tg/yr)	CO (Tg/yr)	NMHC (Tg C/yr)	NO _x (Tg N/yr)
Energy use	110 (65-155)	500 (300-900)	70 (60-100)	22 (20-24) 0.5 (0.2-1)
Biomass burning Vegetation	40 (10-70)	500 (400-700) 100 (60-160)	40 (30-90) 400 (230-1150)	8 (3-13) 7 (5-12)
ightning	85 (60-105)			5 (2-20)
Ruminants Rice paddies Animal wastes	80 (30-120) 30 (15-45)			
Landfills NH ₃ oxidation N ₂ O breakdown*	40 (20-60)			0.9 (0-1.6) 0.6 (0.4-1)
N ₂ O breakdown* Domestic sewage Wetlands	25 (20-30) 145 (115-175)			0.0 (0.7 1)
Oceans Freshwaters CH ₄ hydrates	10 (5-15) 5 (1-10) 10 (5-15)	50 (20-200)	50 (20-150)	
Termites Total	20 (1-40) 600 (520-680)	1150 (780-1960)	560 (340-1490)	44 (30-73)
NO _y produced in the	stratosphere and transported	to the troposphere.		
oution from pogenic sou	~ 70%	~ 85%	~ 20%	~ 70%

Change in tropospheric ozone since preindustrial era

- O₃ is reactive: no ice core record.
- Surface measurements in 19th and early 20th century in Europe: much lower O₃ (10-20 ppbv) than today (40-50 ppbv), and different seasonal cycle. But relationship to Northern Hemisphere concentrations not obvious.
- Global chemical transport models imply a 50% increase in Northern Hemisphere O₃ since pre-industrial era due to increases in emissions of NO_x, CO, CH₄ and hydrocarbons.

