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Principle Component Analysis (PCA) can do many things for you (and to
you, if you are not careful!). In this class, we will demonstrate how and when
PCA can be used to find order in a data set, mainly by reducing the dimen-
sionality of the data. PCA is a way to represent your data in a very compact
form by identifying the most frequently recurring (energetic) spatial structures
in the data, and projecting the data onto these structures. PCA is also known
as Factor Analysis, Empirical Orthogonal Function (EOF) Analysis, and a host
of other names – depending on the discipline you were raised in.

1 Background, Notation, and Matrix Concepts

1.1 Review of Vector Notation

Define two vectors a and b made of elements ai and bi

a =
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. (1)

where we use lower case bold letters to denote vectors. The inner (dot) product
of the vectors a and b is written:

< a,b > =

N∑

i=1

aibi = a1b1 + a2b2 + · · ·+ aNbN . (2)

In vector notation, this is written

< a,b > ≡ aTb = (a1, a2, · · · aN )
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. (3)
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1.2 Review of Matrix Notation

Now lets say we have a data set Z with information at M locations in space and
N realizations in time. Hence, Z is a matrix (written in bold capital letters)
that is written

Z =

N columns (realizations)
︷ ︸︸ ︷






z11 z12 ˙ z1N

z21 z22 ˙ z2N

· · ˙ ·

zM1 zM2 ˙ zMN













M rows (locations) . (4)

It is also convenient to express the columns in a matrix as vectors with a sub-
script to denote it is a vector in a matrix. For the example Z above, we would

write: zj , where zj is the jth vector in the matrix Z.
Each row ”m” of Z is the time series at a unique place in space, zmt. Each

column ”n” is a value of the data at all places in space at a single time t = n,
zxn. The zj are called the state vectors, and we have N of them.

Lets look at a concrete example. Lets say we have maps of sea surface air
temperature over the northern hemisphere for each month, over the period 1948
to 2006. Each map has data averaged over a 10 deg by 10 deg area, so there are
M = 324 locations ( 90/10 x 360/10 ) in a single map, and N = 708 maps (12
* 59 years). Thus our temperature matrix Z has 324x708 pieces of information.
In this case we have N realizations of our ”state vector” of air temperature zj ,
where each state vector has M measurements at time j.

1.3 Review of Matrix Multiplication

Figure 1 shows how you do the multiplication of matrices.
Here

AB32 = a31 b12 + a32 b22 + a33 b32 + a43 b42 . (5)

2 The Covariance Matrix C

Now lets go back and revisit our data matrix and calculate the covariance C

matrix of our data Z:
C ≡ ZZT /N =

=







z11 z12 ˙ z1N

z21 z22 ˙ z2N

· · ˙ ·

zM1 zM2 ˙ zMN













z11 z21 ˙ zM1

z12 z22 ˙ zM2

· · ˙ ·

z1N z2N ˙ zMN







=







c11 c12 ˙ c1M

c21 c22 ˙ c2M

· · ˙ ·

cM1 cM2 ˙ cMM







, (6)
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where

cjk =
1

N

N∑

l=1

zjl zkl = ckj . (7)

So long as we have subtracted the time mean from each record, Eq 7 expresses
the covariance between the temperature at x = j and x = l. Hence, C is the
covariance matrix and a diagonal element ckk of C is the variance at each point
k. So the total variance in the data is

M∑

m=1

Cmm = trace(C) . (8)

[The ”trace” is the sum of the diagonal elements.]

3 Principle Component Analysis

3.1 Eigen Analaysis of the Covariance Matrix C

If there is a lot of structure (covariance) in the data such that much of the
information at different places in space is linearly related, then it is useful to
find a new, smaller set of state vectors that contains most of the variance and
covariance information in the data. This is done by doing an eigen analysis of
the covariance matrix C. First, we decompose C into its M eigenvectors ej and
eigenvalues λj :

C ej = λjI ej , (9)

or
(C − λjI) ej = 0 , (10)

where I is the identity matrix of one on diagonal and zero everywhere else.
Importantly, since C is symmetric, the eigenvectors ejof C are orthogonal to
each other:

ek
T ej = δjk , (11)

where δjk is the Kronecker delta (who was Leopold Kronecker anyway?):

δjk =

{
1 j = k
0 j 6= k

, (12)

3.2 The Empirical Orthogonal Functions

Since the eigenvectors of the covariance matrix are orthogonal, we can use the
eigenvectors as a set of basis functions to re-express our data set in terms of each
eigenfunction. This is completely analogous to expressing your data in terms
of Fourier coefficients, only now the orthogonal basis functions are informed by
the covariance in the data, rather than by sines and cosines.

The eigenvectors ej of the covariance matrix C are known as the Empirical

Orthogonal Functions, or EOFs, because they are a basis set that is determined
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from data rather from the physics (the eigenvectors of the physical system are
are called often called ”normal modes” of the system. The EOFs and normal
modes are almost never the same thing; we will return to this in section 5).

In addition to being orthogonal, the eignenvectors have the wonderful prop-
erty:

M∑

j=1

λj =

M∑

j=1

Cmm = trace(C) = total variance in Z . (13)

Since the eigenvectors are orthogonal, the fraction of variance in the entire data
set that is explained by eigenvector (EOF) j is

λj

/
M∑

j=1

λj . (14)

So, if we order the eigenvectors in such a way that the first eigenvector has
the largest eignvalue, then the first eigenvector explains the largest fraction of
total variance. If there is a lot of structure (covariance) in the data, it will take
only a few eigenvectors to explain most of the data (imagine if we could reduce
our 324 grid boxes to, say, two maps that explain most of the variance in all
324 of the grid boxes!)

3.3 The Principle Components, PCs

The principle components P are the time series of each of the eigenvectors that,
when added together, reconstitute the original data. Hence,

zmk =

M∑

j=1

emj Pjk k = 1, 2, 3, · · ·N , (15)

Hence, the PCs are found by projecting the eigenvectors (EOFs) onto the data:

Pjk = ej
T zk

j = 1, 2, 3, · · ·M
k = 1, 2, 3, · · ·N

. (16)

As a specific example, the amplitude of the second eigenvector (EOF #2) at
time k = 4 is

p24 = e12 z14 + e22 z24 + · · ·+ eM2 zM4 . (17)

We can write this more compactly as

Z = E P , (18)

or
P = ET Z , (19)
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where

E =
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(20)

and P is the matrix of PCs that express the time series of the amplitude of each
eigenvector (EOF), one row per eigenvector:

P =

N times
︷ ︸︸ ︷






← PC1 →

← PC2 →

. . . . . . . . . . . . . .
← PCM →







. (21)

[Note: one can also show that the PCs are orothogonal (try it!).]

3.4 Summary of the EOF/PC Machinery

The eigenanalysis of the covariance matrix gives new functions that allow us to
re-express our data.

• The eigenvectors, or EOFs, are orthogonal in space.

• The time series of the EOFs, called the PCs, are also orthogonal to one
another, and they tell us the time evolution of the EOFs.

• The eigenvectors and eigenvalues contain all of the variance and covariance
in the original data.

• When there is a lot of shared variance between spatial points (i.e., a lot
of covariance), most of the variance and structure in the data can be
expressed in terms of only a few eigenvectors (EOFs) and their time series.
Guidelines for how many modes you retain are discussed in section 4.1.

It is very important to understand the strengths and weaknesses of the EOF
analysis, and these are strongly dependent on the physical system that you are
analyzing. The next section should help illustrate some of the issues that the
analysis must take into consideration.

4 How many modes should we retain, and how

should we interpret them?

So now you have a compact representation of your data set in terms of a fewer
number of EOFs and their associated PCs. How many should you keep, and
when do they have physical meaning? The answer to these questions are not
easy, and it helps to have some experience and an a priori understanding of the
underlying dynamics of the system you are analyzing.
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4.1 How many modes should we retain?

This depends on whether you are using EOFs as a filter on your data set, or as
a way to identify or isolate special modes of variability. In either case, it is an
art form.

4.1.1 Using EOF Analysis as a filter of the data

A typical eigenmode spectrum is shown in Fig 2, ordered from most variance
explained to least variance explained. The first handful of modes explain most
of the variance (and covariance) in the entire data set, so if you keep these
you retain most of the information. The common assumption is that all of
the remaining modes (which together explain only a small fraction of the total
information in your data) is not interesting, or perhaps is even unwanted in-
strumental noise that you don’t want anyway. If your guess right, the stuff you
throw away is just uninteresting signal (noise) or instrument error. In this case,
using the smaller set of EOFs and PCs to reconstitute your data essentially a
filter to remove uninteresting signals or observational error. So where do you
draw the line?

Some have advocated keeping enough EOFs/PCs so that you retain 90% of
the information in the data set: that is, ordering the eigenvalues from largest to
smallest, keep enough to explain 90% of the variance in the data set (determined
in Eq. 14). Others have argued that you should look for a break in the spectrum
in Fig. 2 and keep only those modes that lay to the left of the break. The logic
here is that, if you default model for the system is an AR(1) model (a temporal
spectrum that is ”red”), then a plot logλi vs λi will have a negative linear slope.
If the goal is filtering the data, the overwhelmingly popular choice is the former:
keeping enough eigenvectors to explain the overwhelming bulk of the covariance
in the data.

4.1.2 Using EOFs to ascertain or isolate special patterns of variabil-

ity

You might also want to analyze the space and time structure of the leading
modes (patterns) if you think they have some special physical meaning. De-
termining whether the modes have special physical meaning can be a bit tricky,
however, and requires some experience (and an a priori knowledge of the un-
derlying physics).

Rules of thumb to determine which modes might be physically meaningful
have been developed by several investigators. A very popular one is due to North
et al. (Mon. Wea. Rev., 110, p699-706, 1982), which says that the eigenvectors
are distinct from one another when the eigenvalues are well-separated from each
other. North et al. derived the following equation that describes the uncertainty
in each eigenvalue:

∆λ = λ
√

2/N∗ , (22)

where N∗ are the effective (temporal) degrees of freedom in the data set (see
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Figure 1: An example of how to do matrix multiplication. The product of
the 3 x 4 matrix A and 4 x 2 B is a 3 x 4 matrix AB. Element AB32 =
a31 b12 + a32 b22 + a33 b32 + a43 b42.
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Figure 2: An example eigenspectrum (aka a scree diagram). Plotted along the
abcissa is the eigenvalue number, ordered from largest to smallest. Plotted
along the ordinate is the eigenvalue. The confidence limits on the eigenvalues
are denoted by the whiskers. In this case, only the first eigenvalue/vector is
distinct. From D.L. Hartmann.
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the notes from the lecture on spectral analysis for a discussion of N∗). North
et al. recommend that one not focus on a particular eigenvector/value if there
is overlap with another eigenvalue.

In addition, if modes are identified a posteriori as being special, they must
also exceed in amplitude the default model. If the default model is an AR(1)
process, then the constraint on the eigenspectrum discussed in section 4.1.1 also
holds.

5 Caveats and Limitations of EOF Analysis

Here is a partial list of caveats and concerns of the EOF Analysis.

• The method tends to favor places where variance is large. So, for example,
if you think winds (currents) uare the dynamically interesting quantities
(or the state variables that are simply the most interest), you would get
biased results if you did the EOF analysis of the geopotential (dynamic
height) Φ because the geopotential is weighted by the Coriolis parameter
f :

u = k x
∇Φ

f
. (23)

Note that spatial weighting between winds and geopotential or vorticity
is also problematic because of the spatial weighting by wavenumber (ditto
for currents and dynamic height).

• The technique works best when data across space is linearly related (be-
cause the eigenvalue decomposition is a linear decomposition of the co-
variance matrix). When there are nonlinear relationships in space (which
is almost always the case), you have to be very careful when you assign
physical meaning to the eigenvectors.

In a paleo context, analogous troubles arise if the proxy index is not lin-
early related to the climate variable that you are reconstructing.

• Since all of the variance and covariance is contained within the eigen-
vectors, the EOFs tend to have large spatial structures. Since, in the
atmosphere and ocean, large spatial structures tend to also be lower fre-
quency phenomenon, the EOFs will tend to emphasize large scale, lower
frequency phenomenon.

• IMPORTANT. When the eigenvalues are not well separated, the eige-
nanalysis often will scramble information between the modes, and one
should be very cautious about interpreting these modes as physically. In
fact, in general, don’t try to interpret them physically.

An example of such a problem can be seen using the supplied Matlab
program.
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• When are the EOFs true physical modes? Lets define a true physical
mode as the solution to the linear equation:

dx

dt
= M x , (24)

where x is the state vector M is a matrix that contains the physics and
thermodynamics. The eigenvectors fj and eigenvalues of M are then the
solution to this equation. If M is not Hermitian, however, then the eigen-
vectors fj are not orthogonal and hence there can not be a one-to-one
relationship between the true modes and the EOF modes of the output
from this system.

What would make the matrix M non-Hermitian, and thus destroy a perfect
relationship between the dynamical and empirically determined modes
of the system? Anything that makes M not symmetric. For example,
sheared mean flow or coupled between the atmosphere and ocean (because
they have different Rossby numbers). That is, the EOFs are almost never
true modes of the dynamical system. They can be close, however, and so
there are times when it is useful and appropriate to think of the two as
being nearly synonymous.

6 Presentation of EOF Analyses, and some notes
on EOF Analysis using Matlab

Note that Eq 11 uses the convention that is customary in physics and in lin-
ear algebra packages (such as Matlab): the eigenvectors are chosen to have
unit length. In this case, all of the amplitude information is contained in the
PCs. In the environmental science literature (including atmospheric sciences
and oceanography), it is customary to have the PCs have unit length and instead
place the amplitude information in the eigenvector (the EOF). This convection
allows you to look at a map of the first EOF and say, ”That is what I would
see if there was a typical (1 σ) perturbation in this ”mode.” A 2 σ event would
have the same pattern of anomaly, but twice the amplitude.

6.1 Calculating EOFs using Matlab

If your data are arranged in a matrix Z that is N xM matrix, where the N rows
are the spatial locations of your data and the M columns are the data at each
time step, you are ready to go (just remember to remove the temporal mean
from each location).

• Get the eigenvectors and eigenvalues To get the eigenvectors and eigen-
values, simply write:

[v, sig] = eig(Z)
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The eigenvectors are contained in the matrix v; the column j (v(:, j))
contains the jth eigenvector. The eigenvalues are stored along the diagonal
in the matrix sig and are ordered in order of increasing amplitude. If,
you have M locations, then you will have M eigenvectors and values,
and the vector (value) explaining the most variance is found in v(:, M)
(sig(M, M)).

• Getting the PCs Its easy, use Eq. 19. So type:

P = v′Z; ,

and your PCs will be in the matrix P in the format outlined in Eq 21;
hence, the PC for the leading (most variance eigenmode) will be found in
P (M, :).

• To reconstruct the data using only a few modes If you want to reconstruct
the data using only a few modes, then you can do so as follows. Lets say
we want to construct the data using the first two modes and the fourth
mode. If we have a total of 12 modes, then we want only the modes in
positions 9, 11 and 12 (the fourth, second and first modes, respectively).
Hence, we can write

modes = [9, 11, 12];
zt = v(:, modes) ∗ P (modes, :);

And zt is now the sum of the product of ej PCj for each of these modes,
j = 12, 11, 9.

• Normalizing PC #1 You can normalize the PC by calculating the variance
in the PC (which is the eigenvalue associated with that eigenvector), and
then dividing the PC by the square root of the variance. For example, to
normalize the leading PC, we would take:

p1 = P (M, :);
p1 = p1/sqrt(sig(M, M))

which is equivalent to

p1 = P (M, :);
p1 = p1/std(p1);

• Plotting the dimensional Eigenvector #1 This can be done by writing

e1 = v(:, M);
e1 = e1 ∗ sqrt(sig(M, M);

• Is another field related to the one you have just analyzed? Lets say we have
a separate data set S(xj , t). We can find out if this data set is related to
the leading eigenvector eM of our data Z by correlating each time series
in this new data S with our PC#1 = p1:

for i = 1 : M
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F(i)= corrcoef(S(i,:), p1);
end

where the correlation coefficientsF (xj) can be mapped to see how and where
the variable S is related to the leading pattern of variability.

If you have normalize the PC to each have unit variance, then you can regress
any data onto it and interpret the resulting spatial map as the ”map that accom-
panies a typical (1σ) excursion of the phenomenon captured in EOF/PC#1.”

for i = 1 : M
R(i) = S(i, :) ∗ p1′/N ;
end

where the R(xj) are the regression coefficients, which can also be mapped.
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