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Spectral analysis

“If we dealt with problems involving the superposition of a few simple periodic
phenomena, as do astronomers interesied in binary stars and related problems, we
can learn much from the periodogram. Sadly. however, alinost no one else has this
kind of duata. As a result. the periodogram has been one of the most misleading
devices I know.”

John Tukey (1967)

3.1 INTRODUCTION

As mentioned in the Introduction, spectral analysis has been absolutely key in
establishing the importance of astronomical forcing for climate. Yet spectral analysis
is considered by many to be an arcane field to be approached only by experts. There
is good reason for this: there is a long history of incorrect results published by good
scientists who fell into spectral traps. Many people prefer to ignore the field, or at
least not get involved. Yet that really isn’t possible for scientists who want to form
their own judgements about the relative contributions of proposed astronomical
mechanisims.

In this chapter we will give an introduction to spectral analysis. We will attempt to
describe the fundamental techniques, as well as alert the reader to traps and pitfalls.
We will describe some commonly-used “tricks of the trade’ such as zero padding,
that make interpretation of spectra simpler and more intuitive.

We fecl obliged, however, to offer a few words of caution. Although there are
many ways to do an incorrect spectral analysis, there is no “‘correct way”. The
method chosen will depend on the taste and intuition of the analyst. In the literature
on climate you will find proponents of the Blackman-Tukey method. of the Multi-
laper method, of the Maximum Entropy method. and even proponents of the un-
windowed periodogram. You will find advocates of log plots, linear plots and square
root plots, Be aware that all approaches to spectral analysis entail assumptions, and
that the differences in these assumptions often account for the different results of the
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analyses. If vou know what those assumptions are, you can make a reasoned judge-
ment of what conclusions you should draw.

In many ways, the spectral analysis of climate data is a specialised application.
Many of the methods that are optimum for other kinds of data are not optimum for
paleoclimate data. The traditional focus of statisticians are 1ssues such as “leakage”
(how does power at one frequency affect another). “*bias™ (is the estimate. on average,
centred at the correct value). and “‘consistency” (does the precision of the estimate
improve when more data are analysed). Yet these issues have been remarkably un-
important in the history of climate analysis! Far more important have been issues
traditionally ignored (or at least. not emphasised) in the traditional methods. These
include systematic errors. the uncertainty in the time scale, the coherence of the
background across many different sites, and the need for high resolution—rather
than accurate estimation of either the amplitude or the frequencies.

With a few exceptions. we will emphasise results. and not proofs. There are
many textbooks that prove the theorems that we state; see. for example. those by
Priestley (1981) and Percival and Walden (1993). [t is more important for the
paleoclimatologist to understand the limitations of the various methods rather
than the derivations.

3.2 THE FOURIER TRANSFORM

Any function can be expanded in terms of polynomials. The resulting expression is
known as a Taylor Series. But even if you understand the Taylor expansion. it still is
not obvious (although it is true) that. instead of polynomials. you can use harmonic
functions: sines and cosines. Basically. any function can be expressed as a sum of sine
functions and cosine functions. The result is known as a Fourier series. named after
the French mathematical physicist Joseph Fourier, who invented it to help solve heat
flow problems.

When should you use polynomials. and when should you use harmonic functions?
[f the underlying forces are harmonic, then use of a harmonic series often results in
the need tor a much simpler and shorter expression. {f upon doing the analysis you
discover that a few terms dominate, then you can try to identify them with known
forces that hiave the same periods.

Mathematicians write sums in two ways. When the sum consists of a countable
number of pieces. they use the capital Greek letter Z (which corvesponds to the
Roman S). This letter is now often called “the summation svmbol”. When the
sum consists ol a continuous nwinber of termis. they use a script S. which has evolved
into an integral sign [. We will begin with the integral version but. since the data
consist of discrete points, this will soon turn into a discrete sum. known as the digital
Fourier transform.

3.2.1 Basic properties

Let the symbol Al1) represent a continuous function of time. such as the insolation
Then the ordinary Fourier transform. also called the Fourier amplitude. is a functio
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of frequency f:
Hy(f) = [ h(1)e*™ di

J -0

The subscript on the function Hy is the letter 7 standing for “True”. (We’ll get rid
of this in a moment, as soon as we show that we can never calculate Hy from real
data, but only estimates of it.)

Everything that we are about to do can be done without the use of complex
numbers. If we were to do so, we would get two Fourier transforms: a cosine trans-
form and a sine transform. But these correspond the real and imaginary parts of the
complex transform H. We will continue using complex numbers primarily because,
typically, they make the equations half as long and more transparent. In the end, the
spectral functions that we derive will all use real numbers.

Part of the charm of the Fourier transform comes from the fact that we can solve
this equation explicitly for A(r), yielding an equation that looks very similar to the
previous one:

oG .
o = [ e
o
Thus, given data A(¢). we can find the Fourier transform H(f). and given H(f), we
can find A(r). The two contain exactly the same information, expressed in different
ways.
The spectral power P is defined as the square of the Fourier amplitude:

Pr(f) = |Hr ()|’

Note that the spectral power does not tell us the phases of the sine waves. In an
information theory sense, i1t contains exactly half of the information. Of course, the
phases can be obtained directly from the Fourier amplitude.

But once we start talking about real data, rather than theoretical functions. we
run into a problem. Real data do not span infinite time. Even worse, if 4 is a climate
proxy, we might have it sampled only at a few (say 300) discrete points over a time
range of a few hundred thousand years. Because of this limitation, we can never
calculate the true Fourier transform Hy. and never get the true spectral power P.
The best that we can do is to get an estimate of Py. The entire theory of spectral
analysis is devoted to methods to obtain such an estimate.

One important estimate of H; can be made from discrete samples of A(¢). Suppose
that all we have available to use is the value of /(1) at times ;. We define these values
as the set /i;:

hy = h(t;)

Then an estimate of the Fourier transform can be made by the equation:
N
N VYif?
H(f) =) hye'™
j=1

Notice that we have turned the integral into a sum. and that H no longer has a
subscript 7. This H is not the true transform; it is only an “estimate™ of the true H.
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There are important theorems that can be proven for the special case that the data
are cqually spaced in time. I the interval between points is Ar. then define the
“Nyquist frequency™ as |
2A1
The Nyquist freguency is the highest frequency that will appear in the Fourier
transtorm. To appreciatc how important the Nvquist frequency is to your everyday
lite. consider the following tuct. The engineers who designed music compact disks
(CDs) chose the sampling period Ar to be /44000 sec. so that the Nyquist frequency
would be 22,000 cycles/sec—-above the hearing range of most people. (Some audio-
philes still argue that this was not high enough, since although the human ear cannot
hear individual tones at frequencies this high, inaudible signals at higher frequencies
are uliused into the audible range. We discuss aliasing in Section 3.2.8.)

By convention. we let f, = 0 represent the average ("DC™) level of the data. We
will usuafly subtract the average vatue from the data before we do a spectral analysis,
and this will automatically give us Hy = 0. (If you ever forget to subtract the mean
[rom the data, the thing you will notice i1s a very high value in the first bin of the
spectral power, usually overwhelming the vest of the transtorm!) The lowest fre-
quency of real interest 1s the one that gives one full cycle in the time interval T

_/.\' =

Now we have the highest frequency /. and the lowest /; . We still have to decide what
other frequencies to evaluale. It turns out that a very convenient choice is to pick
multiples of the low frequency f;:

o=kt

To simplify our discussion. let’s assume that N is even. [f we allow A to run between |
and N /2, this gives us N/2 frequencies going from f, 10 [y.

Why do we get only N/2 frequencies from N data points? The reason is that {or
each frequency. we obtain a complex number. The real part is the cosine coefficient.
and the imaginary part is the sine coefticient. So we are obtaining N/2+ N/2 =N
amplitudes from N data points. Why are there at most only V/2 data points in the
spectral power plot? The reason is that we are not plotting the phases. which account
tor another N /2 data points.

It turns out that there is some value in letting A run over a larger range. even
though the frequencies that we calculate in doing so will not give us any useful
information. We start with & = 0: that includes /' = 0 in the calculation. If we let
k run from 0 to N — 1. we get the following nicely symmetric pair of equations:

N -1
2aiph
H/‘- = Z /1/;(’- hiel,

=0

N

i
hj = He i
k=0
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This set of cquations for discre;te data is usually called the “discrete Fourier trans-
form”. H is the complex Fourler'tr:msform of h.
These cquations have nnother important fc?ature. It we knew, somehow, that A(1)
were “hand-limited ™ (it contz}ms no freque.nme.s below f; or above fy), then we can
rove that the discrete trunstorm_above will yield the. exact true fqnction Hy! This
means that there is & relationship between the continuous function A(r) and the
discrete values Ay Tt is given by:
N~
)y =S Hpe ™

>
I
=

The only dillerence between this and the previous equations is that the function h{/)
here is continuous, and the subscript k has been dropped from the ¢ in the sum. This
result means that the function h(t) is completely determined by its samples k. The
pand-limited condition is often met for many functions of paleoclimate interest, such
as eccentricity and insolation. The condition is often not met for geologic data.
Nevertheless. this equation means that the discrete Fourier transform can often
serve as a cxcellent method for estimating the true spectrum.

3.2.2 Glacial Fourier transform

Wwe will now discuss the numerical calculation of the Fourier transform. We begin
with a method we call the “Glacial Fourier Transform™. This method is extremely
easy. but almost never used, and yet it is probably the best method to start with for a
beginner. Most experts will tell you to use the “"Fast Fourier Transform™ or FFT.
Don't listen to them! We think the FFT. with the burden of jargon that you must
learn before you can even start to use it, serves as a barrier to keep beginners away
from playing with and understanding the Fourier transform.

The cquation for the discrete Fourier transform (from the previous section) can be
broken inlo its real and imaginary parts:

H(7)

I

hi(cos(2nfi;) + isin(2n/1;))
/

i

N
h; cos(2mfL;) + iZh, sin(27ft;)

i=1

Hp(1)+iH; ()

(Note that although the quantity iH,(f) is imaginary. the function H,(f) is real.)
For paleoclimate work. these real and imaginary components of H can be evaluated
f‘rom this cquation on a small computer. Once the data h(k). the ages t(k). the desired
frequency f.and the number of data points N have been read into the computer, the
code in Basic calculates the real and imaginary components (Hr and Hi) of the
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Fourier amplitude and then sums and squares them:

Hr=0
Hi=0
fory=1toN

Hr = Hr + h(j) * cos(6.2831853 * f * t(j))
Hi = Hi + h(j) *sin(6.2831853 = { * t(j))
next j

P=Hr"2+Hr"2

As we mentioned earlier, you will almost never see code like this, since computer
programmers consider it inefficient. But what is inefficient for the computer may be
simple and clear for the scientist. The method will not be mentioned in texts on
numerical methods. But that is silly. On a modern computer, the computation is so
fast, that it is more important to write easily understood code than to write fast code.
As an example, we applied the Glacial Fourier transform to calculate 250 frequencies
for 500 data points, using the computer language Matlab™ on a laptop computer.
The entire computation took 0.12 seconds.

This is a good time to look at the equation, and get a sense of what the Fourier
transform does. It takes your data, multiplies it by a sine wave, and then sums the
results. If the data oscillate in phase with the sine wave, so that they are positive
together and negative together, then all the terms in the sum are positive and the
Fourier amplitude is large. If they drift into phase and then out of phase, then half of
the values in the product will be positive and half will be negative, and the sum will
be close to zero. You can also see that the sum is not particularly sensitive to sharp
changes in the data (e.g. sudden terminations); it is more sensitive to the bulk
behaviour of the data, e.g. are most of the data points positive when the sine
wave is positive? _

You can calculate the phase from

Unfortunately, the inverse tangent function in many computer languages, called
atan, returns a value limited to the range —7/2 < ¢ < 7/2, which only covers half
of the angular range. This problem can be avoided in Fortran, Matlab, and in some
Basic interpreters, by using the alternate function atan2:

¢ = atanZ(H,, HR)
We like the program Matlab™ for our computations of the Fourier transform. |

|

L

|
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Matlab represents the list of values hy, h,, hy,..., h, by a single symbol h. The
Matlab code for the Glacial Fourier transform becomes very simple:

Hr = sum(h. * cos(2 * pi * f * t));
Hi = sum(h. % sin(2 * pi * f x t));

If you think of the word “‘sum” in these equations as integral signs, then the code
looks just like the equations defining the Fourier transform.

In paleoclimate studies, the only time you need to use the faster FFT is for Monte
Carlo studies, when it is necessary to calculate thousands of spectra. Also, if you are
using someone else’s spectral analysis program, it probably has an FFT built in. To
learn to use the FFT, of course, you must learn a few more things:

e how to interpolate your data to uniformly spaced time intervals;

e how to pad the data with zeros, so the number of data points will be an exact
power of 2;

e how to interpret the mysterious order of the output vector, which will have
every value appearing twice;

e how to calculate the frequencies that go along with the FFT, by using the
Nyquist formula;

e how to interpolate between the FFT frequencies to get the value at the
frequencies that you really want (e.g. at the known astronomical frequencies).

We give Matlab routines in Appendix 2 that do all these steps.

3.2.3 The uncertainty principle

The Fourier transform has an elegant theorem associated with it called the “‘un-
certainty principle”. We are going to say more about it than anyone in paleocli-
mate needs to know, just because we find its connection to quantum mechanics
very interesting. If you don’t, then skip this section. All we will need is the final
equation.

The uncertainty theorem of Fourier analysis is directly related to the uncertainty
principle of quantum mechanics. The uncertainty principle is most simply stated in
the following way. Suppose the function A(¢) is significantly different from zero in
only a limited region near ¢ = ¢,. Let the width of this region be A:. Then the spectral
power will also have a significant value only over a limited range of frequencies Af.
Moreover, there is a simple relationship between these widths:

1
A > __
tAf‘"47r

This inequality can be proven mathematically if we define As to be the root-mean-
square (RMS) width of A(#), and Af to the RMS width of H(f). The equality is
true only if A(z) happens to have a particular shape known as a Gaussian. The
relation is the basis of the famous Heisenberg Uncertainty Principle of Physics. If
we multiply both sides of the equation by Planck’s constant h, and then use the

-
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quantum-mechanics relationship that the energy £ = Af,, we get
h
AtAE > —
T
We can derive a similar physics equation for momentum. If our quantum mechanical
wave 1s a function of position v. the wavefunction can be expanded in terms of
spatial frequencies /. We define the wavenumber k by & = 2xf. The uncertainty
equation now reads

Ax Ak >

o -

Multiplying by /i/2x. and substituting the quantum mechanics definition of momen-
tum p = hk /27, we get the equation that Heisenberg is most famous for:

Il
AxAp > —
¥ p_47r

But fet us now return to the mathematical version of the equation. Suppose that we
have a record that fasts for a time 7. What is Ar? [t is the root-mean-square deviation
from the average time. What is that? We can make a quick guess lrom the fact that
all the points are less than T7/2 from the average time. so Ar must be less than 7 /2. If
you calculate the RMS for a flat distribution, it is not hard to show that the correct
value is Ar = T/V12 = 0.297. So according to the Uncertainty Principle,

TA) ]

{ = — > —
AtASf =25
/ V3l 0.28
~ T T

This, of course, 1s still an inequality. To get an equality. we can perlorm the calcula-
tion explicitly by performing a Fourier transform of a pulse of duration 7. More-
over, when we do this we can conveniently pick A/ to be the Jull-width at half-
maximum (FWHM) of the spectral power, rather than the RMS deviation {rom
the average of the Fourier amplitude. From this calculation. we get the result:

_ 089
T

(The numerical constant 0.89 is actually 1.3916 x 2/r. and 1.3916 is the solution to

the transcendental problem (sin.x/x)"= 1/2.) This equation is often simplitied even
further to read:

Ay

i

A= —
‘ 7

and this is the way you will {requently see it stated in the literature. sometimes with

the =" symbol replaced with a **="" symbol. In this explanation. T was the duration

of a pulse. The same equation results il instead T is the duration of data containing a

S —
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sine wave. (To show this, we can represent the data as a product of an infinite sine
wave and a pulse, and then use a result known as the “convolution theorem™.)

Applied to paleoclimate data, this equation gives a relationship between the width
of the peak in the spectral power, and the duration of the signal. So, for example, if
you do an analysis of data that has a duration of 600kyr, and the data contain a
perfectly periodic wave that stays at constant frequency for that period, then the
FWHM of the spectral peak will be 0.89/600 = 0.0015 cycle/kyr. If the record is
longer, then the width will be correspondingly narrower.

But you can do much worse. If windowing is applied to the data (see the sections
to follow) then the resolution is degraded. For example (see Priestley, 1981, Sections
7.3-7.4), the Parzen window degrades the resolution by a factor of 6/ = 1.91. And
you can also fool yourself into thinking that you can do better, e.g. with Maximum
Entropy Analysis (see Section 3.8).

3.2.4 Periodogram

The “periodogram”™ was invented by Arthur Schuster in 1898 for the purposes of
studying climate. It was the first form of numerical spectral analysis and, although
experts frequently prefer other methods, it is still the most widely used. As conceived
by Schuster, the periodogram is the absolute value squared of the Fourier transform,
applied to evenly-spaced data. Even though the data exist only at discrete times, the
periodogram could be evaluated and plotted at any frequency-—provided that you
had the patience and time to do the computation. Thus the periodogram is the
technical term for the method of estimating spectral power that we have been
describing.

Many competitors to the periodogram have been invented subsequently. As we
said in the Introduction, there is no one “‘correct” method for spectral estimation.
One important advantage of the periodogram is that, unlike many other popular
methods (e.g. maximum entropy analysis and multitaper analysis). its statistical
properties are well understood. For example, if we represent our model for the
data as a sum of sine waves plus error, then Whittle (1952) showed that the period-
ogram gives the best maximum likelihood estimate of those frequencies. If you are
reallv interested in these formal aspects of spectral analysis, you will find them
described in a readable review by MacDonald (1989).

It has become popular in statistical circles to object to the use of a simple period-
ogram. For example, M.B. Priestley (1981) states that

“the periodogram is an extremely poor (if not a useless) estimate of the spectral
density function.” (p. 420)

In the otherwise insightful book, Numerical Recipes, W. Press et al. state (1993):

“... the variance of the periodogram estimate at a frequency fy is abvays equal to the
square of its expectation value at that frequency. In other words, the standard
deviation is always 100 percent of the value, independent of N!"" (p. 422)
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But these statements are highly misleading for the student of paleoclimate, since they
are meant to apply to continuous spectra or resolved spectral peaks. (A resolved
peak is one which is broader than the Af resolution limit of the Uncertainty Prin-
ciple.) If we have an unresolved spectral line, as is often the case in astronomy or
astronomicaily-driven phenomena, then the periodogram is often an excellent meth-
od. John Tukey, one of the founders of modern spectral analysis, summarised this
conclusion (Tukey, 1967):

“If we dealt with problems involving the superposition of a few simple periodic
phenomena, as do astronomers interested in binary stars and related problems, we
can learn much from the periodogram. Sadly, however, almost no one else has this
kind of data. As a result, the periodogram has been one of the most misleading
devices [ know."”

Paleoclimate is precisely one of those “related problems” that ts dominated by a few
simple periodic phenomena. In this chapter we will show the application of many
spectral methods to paleoclimate data, and it will often turn out that the period-
ogram, sometimes with a simple modification called a taper, is the most useful
method to apply. Particularly for the study of the 100-kyr cycle, the signal to
noise is huge (often 10:1 or greater). There is negligible leakage from adjacent
peaks, and bias from a sloped background is often unimportant. For the study of
such phenomena, there is little value to be obtained in reducing the resolution by the
use of other methods, and there is much to be gained by the high resolution of the
periodogram.

The periodogram has been maligned because of a curious feature: signal to noise
of a continuous spectrum cannot be improved by taking a longer set of data. The
reason for this is simple: in the periodogram, the bin size is proportional to 1/7, and
thus for long records, the frequency resolution improves proportionately—so that
the power in one bin will not increase. If the signal is continuous or the spectral
feature resolved, then the signal to noise level does not change. Other techniques
have been developed for this purpose, including the “Blackman—Tukey method™, the
windowed periodogram, and the multi-taper method. These methods also have other
advantages as well; they are devised to reduce systematic effects known as leakage
and bias.

But you cannot gain something without losing something, and each of these
methods gains its signal-to-noise advantage by throwing away frequency resolution.
The loss of resolution can be extremely misleading if the key difference between
models lies in the shape of the spectral peak. In the periodogram, the information
that you gain about the spectrum does increase with the length of the spectrum since
you measure the frequency with greater accuracy. But, historically, statisticians have
been more concerned with power estimation than with frequency estimation, hence
their dislike of the method. In paleoclimate, the situation is exactly the opposite. We
are more concerned with the detection of narrow spectral peaks than in a precise
estimate of their power levels. This makes the periodogram, in many cases, ideal.

For the unresolved spectral feature, the periodogram can be superior to many of
the other standard techniques, because it puts the power into the fewest number of




Sec. 3.2] The Fourier transform 57

bins. It can be shown that, if the power at a frequency / is normalised with respect to
the local noise (i.e. the local noise has value 1), then the standard deviation op of the
power P is given by:

O'p:VZP—l

This implies that the fractional uncertainty of the power is

2_\/2P~1~\F
P P VP

Since the spectral power of an unresolved peak increases with time, the uncertainty
in the estimate of the power decreases rapidly, as the square-root of time (in contra-
diction to the overgeneralised statement of Press et al. given above). For a pure sine
wave, the power increases proportionally to time, whereas the noise (local back-
ground) remains constant, so the signal-to-background estimate improves as the
square-root of time.

In paleoclimate work, the favoured approach has been the Blackman-Tukey
method which we will describe in Section 3.3. In fact, the periodogram can be
considered a special case of the Blackman-Tukey method, applied with the Black-
man-Tukey lag parameter set to unity.

3.2.5 Sharp feature in the time domain

In paleoclimate data, there are often features in the time domain that are abrupt,
such as the “'sudden terminations™ of the glacials. It is important to note what effect
such a feature has on the spectrum. Mathematically we call a brief spike a *‘delta
function™; an abrupt change in level (e.g. an abrupt termination) is a ““step func-
tion"".

The Fourier transform of a delta function is particularly easy to calculate, since it
Is zero except at one time:

HT(f) = J 6(’ — [0)€2ﬁi/7tll — e'.’m'[/n

Pr(f) = |Hr|* =1

This shows that the spectral power of a delta function is constant, i.e. it contributes
equally at all frequencies. For a digital Fourier transform, the result is approximately
the same. We recommend that the reader, particularly the reader new to digital
transforms, try this digitally. Represent a delta-function by setting the data equal
to zero except at one point. Then do a Fourier transform. The result is shown in Fig.
3.1 below for the age range 0-600 kyr, with one point at 1 = 300 kyr set equal to 1.
The function is not quite constant, although most of the points have value near 1.
The function goes to zero at / = 0 because we subtracted the average from the data
points before performing the transform.

S et
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Fig. 3.1. Spectrum of delta function.
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Fig. 3.2. Spectra of sine and sawtooth.

It is very interesting to see the effect that sudden terminations have on data. In
Fig. 3.2 we show the spectral power of a pure sine wave and that of a 100 kyr
sawtooth (i.e. triangular) wave:

You'll note that the primary difference between the two are the reduced power in
the fundamental peak (at 0.01) and the presence of the harmonics at multiples of the
fundamental frequency. The area under both curves is the same, by our normal-
1sation convention (mean power = 1). The harmonic peaks are so small that they can
be easily lost in, or cancelled by, background (if it were present, as it would be in real
data). The net result is that the properties, or even the existence of the abrupt
terminations, can be hidden or lost in the frequency domain. They are best studied
in the time domain.
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Fig. 3.3. Randomised sawtooth.

Another possibility, however, is that the glacial cycles are astronomically driven,
but that the sudden terminations have a random component. The first day of snow
rarely occurs on the first day of winter. The ice does not usually crack on the first day
of spring. We have simulated this by generating a sawtooth in which the abrupt
transition occurs every 100kyr+ o where we set ¢ equal to a random number
between 20 kyr. The data generated in this way are shown in Fig. 3.3.

The spectrum for these data is shown below (Fig. 3.4). The 100 kyr peak is still
strong, but the secondary peaks no longer show a simple regular behaviour. The
harmonics, multiples of the fundamental 0.01 frequency (and have periods of 50 kyr
and less) are gone—destroyed by the +20kyr random terminations! The spectral
power of these harmonics has been spread to nearby frequencies. This again illus-
trates that the analysis of the terminations is not readily performed in the frequency
domain.
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Fig. 3.4. Spectrum of randomised sawtooth.
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3.2.6 Fast Fourier Transform (FFT)

The FFT is simply an extremely efficient way to calculate the Fourter transform for
the case of equally-spaced data. It is such a popular technique that many analysts
will extrapolate their data to evenly-spaced points just so they can use this method.
An ordinary digital Fourier transform takes N data points. and calculates the real
and imaginary amplitudes at N/2 frequencies. To do this requires N* transcendental
calculations (1.e. computation of sines or cosines). Based on a suggestion of Richard
Garwin. Cooley and Tukey developed a method of doing the identical calculation in
a way that was proportional to N log, N rather than to N-. For very large computa-
tions this provides an enormous saving in computer time.' For example, in astron-
omy, it is frequently necessary to compute the Fourier transforms of ¥ = 107 data
points. The ratio of computation times for the FFT vs. the Glacial Fourier Trans-
form (GFT) is then log, N/N = 2.3 x 107°. A computation that takes one second
using the FFT would take five days using the GFT.

Many people who use the FFT find it confusing initially. The FFT requires data
at equally-spaced time points, and is most efficient when the number of points is an
exact power of two. The process of interpolation to evenly-spaced data introduces
additional biases and systematic error. The format of the output can also be con-
fusing. For real data consisting of N data points v,, each taken at time #;, the power
spectrum output from the FFT appears as a set of N + 1 data points. The first and
last data points are the same. and they represent the power at frequency zero. The
second through to the N/2 + | data points represent the power at evenly-spaced
frequencies up to the Nyquist frequency (= /241, where Ar is the time between
equally-spaced data points). The spectral power for a given (requency is spread
out over several bins; an optimum determination of the power requires combining
this information. In the standard FFT. the original data are overwritten with the
Fourier transform, erasing it. This procedure dates back to the days when computer
memory was a limiting expense. [t is hardly ever worthwhile today.

Despite these complications (which are routinely handled by a computer program.
once it is written and debugged, and forgotten by the user), the FFT is worth using
whenever speed is important. Especially when doing a thousand or more Monte
Carlo simulations (a procedure we highly recommend whenever you encounter a
new kind of data), the speed of the FFT proves valuable.

3.2.7 Padding with zeros

The FFT calculates the amplitude for a particular set of pre-chosen frequencies. If
there are N data points, then N/2 complex amplitudes are calculated at N/2

"Although the practical use of the FFT began with the Cooley/Tukey implementation. there is a long
history of mathematicians recognising that faster computations could be done. Gauss observed that he
could break a Fourer series into two parts. and reduce the computation stgniticantly. but he never
published his work. Daniclson and Lanczos in 1942 derived the entire algorithm, Could a faster algorithm
be imvented some day? For standard computing (Turtng machine). the answer is no.
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Fig. 3.5. Effect of padding on spectrum of eccentricity.

different frequencies. The lowest (non-zero) frequency is 1/7T, where T is the dura-
tion of the record. This frequency corresponds to one cycle over the entire data set.
All other frequencies are multiples of this. Unfortunately, none of these may corre-
spond to the true frequencies present in the record. For example, suppose we have
200 data points, covering a period of 0 to 500 kyr. Then the lowest frequency is
1/500 = 0.002. If the data are dominated by a 41 kyr signal, then the frequency of
that signal is 1/41 = 0.0244. This is not an even multiple of 0.002, so the FFT will
not calculate the amplitude at this frequency.

A simple and elegant way around this is to subtract the mean from the data, and
then pad it with zeros, i.e. extend the data beyond T (to, say, 10 x T) by adding
zeros to it. The FFT takes about 10 times longer, but computers are fast. The ideal
way is to pad to an exact power of 2. With this padding, the minimum frequency is
now 0.0002, and the FFT will calculate the amplitude for the frequency 0.0244. (Of
course, 1/41 is not exactly 0.0244.. )

We illustrate the value of padding by calculating the spectral power of eccentricity
for the period 0 to 600 kyr, with and without zero padding. The results are plotted in
Fig. 3.5. Note that without padding, the structure of the spectral peaks is invisible.
That is because much of the information is hidden in the phase, which is not included
in the plot of spectral power. With the padded data, intermediate frequencies are
calculated. and the clear contributions of the peaks with periods of 400, 125 and
95kyr are evident.

3.2.8 Aliasing

A problem arises if there are fluctuations in your data that are more rapid than your
sampling. (This is the same as saying that there are frequencies in the data that are
higher than the Nyquist frequency.) Suppose. for example, that you have samples of
Grzenland Ice that represent the temperature every 100 years. But your sampling is




62 Spectral analysis [Ch. 3

not precisely spaced by a year, so sometimes you measure winter ice, and other
samples are summer ice. Even if there is no long-term variation in the temperature,
you will see jumps up and down in your data. Unless you know the time scale
exceptionally well, you may not be able to tell that the variations you see are actually
seasonal. Yet, the Fourier transform will “explain” all these fluctuations as being due
to cycles with periods greater than 100 years. It will do this because the transform is a
mathematical identity; the data can a/ways be expressed in terms of sines and cosines,
even though the Fourier transform uses only a period longer than twice the sample
period. The maths finds a fit, even though the real frequency is not included in the
expansion series. The Fourter transform is lying to you!

As an example, suppose you measure data at 50 kyr intervals, i.e. at ¢ = (0, 50,
100, 150, 200, ...), and get the values y = ([, —1[, I, =1, 1, ...). Let us assume that
these data points resulted from an oscillating signal with a period of 20 kyr, i.e. they
are explained by the function y == cos(2nf7) with f = 1/20 = 0.05. But if we didn’t
know that, we might think that they were due to frequency / = 1/60. We plot the
data points along with both sine waves in Fig. 3.6, and you will notice that both
frequencies agree with the data points. There is no way for the Fourier transform to
know which of the frequencies is the correct one, since it has only the sampled data.

Which will the Fourier transform pick to represent the data? It will give a large
amplitude at frequency f = 1/60, despite the fact that we created the signal from
f = 1/20. This misidentification is given the name “aliasing”. It occurs whenever the
sampling is less frequent than the period of the true oscillation. For a further
discussion of the mathematical aspects of aliasing, see Press et al. (1993).

Aliasing can be a problem in ice data, as the example illustrates. It is usually not a
problem in sea floor data, since the periods of interest (from 19kyr to 400 kyr) are
usually much longer than the sample interval. Any phenomena that tend to smooth
the data (such as bioturbation) tend to eliminate aliasing.

We mentioned earlier (Section 3.2.1) that some audiophiles complain that music
CDs suffer from aliasing. The sample period for these CDs was chosen to be 1/44000

amplitude

[

L o} L ) - L 1 . i N L

0 20 40 60 80 100 120 140 160 180 200
age (kyr)

Fig. 3.6. Aliasing. The circies are the data points.
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sec, so that the Nyquist frequency is 22000 cycles/sec, above the audible range. But
musical instruments produce sounds at higher frequencies. When music from these
instruments is recorded digitally, the sound is aliased to lower frequencies. When this
happens, the CD contains sounds at audible frequencies which would not be present
in the live performance. Recording engineers can eliminate such aliased sounds by
putting in a filter that removes the higher frequencies prior to the music being
digitised. If they are absent in the original, then they are not aliased. However,
any flter applied to the signal has some effect at lower frequencies, particularly
since the ear does not respond in a linear way to sound, and this too can introduce
an objectionable distortion. Audiophiles will say that they prefer listening to music
to which no filter has been applied. Of course, any recording medium (such as
records) has a frequency response, and therefore acts as a filter. The question isn’t
whether or not we should apply a filter, but which filter has the most objectionable
effect on the music.

3.3 BLACKMAN-TUKEY METHOD

The Blackman~Tukey method was the most commonly applied spectral analysis
tool for paleoclimate studies in the last three decades of the twentieth century and,
as such, it deserves special attention. It was introduced in a classic book (Blackman
and Tukey, 1958) that introduced many scientists to fundamental techniques of
spectral analysis. It was published before the rediscovery of the Fast Fourier
Trans’orm by Tukey. Blackman and Tukey were primarily concerned with the
difficult case of analysing a continuous spectrum that was biased by the presence
of sidelobes from strong peaks. Part of the attraction of the book is that it offered
a prescription for scientists to follow. The book also offered an abundance of
warnings—that the algorithm and suggested parameters should not be followed
slavishly, but that it should be used only as a starting point. As an added bonus,
the method made efficient use of tricks to reduce the required calculation of sines
and cosines. This was important at that time since the book predated the FFT by
seven years.

The Blackman-Tukey method is based on a fundamental theorem of Fourier
analysis that states that the Fourier transform of a correlation is equal to the product
of the Fourier transforms. The correlation of two functions 4 and B is defined as

00

C(ry=goh= j gt + )" (1)

The star * indicates complex conjugation. The correlation theorem states:
FT(g® h) = FT(g)FT"(h)

A special case of this, when g = h, 1s known as the Wiener—Khintchine theorem:

FT(g®g) =|FT(g)* = P

'3
VS
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where P is the spectral power. In words, the Fourier transform of the autocorrelation
function is identical to the spectral power. In the Blackman-Tukey method, an
estimate of the spectral power is obtained by taking the Fourier transform of only
part of the autocorrelation function.

The algorithm involves several steps. The first, optional, step is called prewhiten-
ing; it is designed to reduce the bias in frequency determination that happens when
there is a strongly varying background under a weak peak. The next step is also
optional: the data are tapered by application of a window; for further discussion of
this, see Section 3.4. But the heart of the method is the calculation of the partial
autocorrelation function, defined by

T/N
Ayn(r) = L i+ 7)f (e

Since we are using data with real values, we have assumed that /' = f*. The key
difference between this and the full autocorrelation function is that the integral is
evaluated only to T/N, where 7 is the length of the data record. If N = 1, then this is
the full autocorrelation function, and the method gives the same answer as the
ordinary periodogram. A more typical value is ¥ = 3; when this is chosen (and it
is the value that Blackman and Tukey recommended as a starting value), then we say
that “‘a lag of 1/3” was used. Alternatively, we can specify the number of data points
that appear in the overlap integral. Thus, for example, if there are 99 data points,
and N = 3 was used, then we might say that there were 99/N = 33 lags used.

Note that this “‘partial” autocorrelation function is symmetric, i.e. A(—7) = A(7).
If we take the Fourier transform of this we get Py, the Blackman-Tukey estimate of
the power for 1/3 lag:

+00

Porlf) = J ¢ 4 g (7)dr = FT(A gr)

-0

Since the autocorrelation function is symmetric, only the real part is non-zero.
Therefore, in the pre-FFT days, we could save half of the computation time by
computing only the symmetric part:

+00

Pyr(f) =2 j cos(2nf) Agr()

0

If the lag were one, then this procedure gives the same estimate of the power as we
get by squaring the Fourier transform:

Pif) = J_ ™Y A(T) = FT(A)

However, if only part of the full autocorrelation function is used, the result is
different. To see what the effect is, consider the pedestal function

B(r)y=1 for —-T/3<7<T/3

B(r) =0 otherwise
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Then wc can write
Ayy3(7) = A(T)B(7)
and the Blackman-Tukey estimate of the power is
Por = FT(4B) = FT(A) ® FT(B)
PRb

fi

Where b = FT(B). This shows that the effect of the Blackman-Tukey method is to
blur (or smooth) the spectral power function. The amount of smoothing is the same
that you get by convolving the spectral power with the blurring function b. For the
simple pedestal function B(r) given above, b is

to T/3 .
b(f) = [ ™™ B(1)dt = J e>™dr
oo ~T/3

T/3
= J [cos(2nft) + isin(2mft)]dr
-T/3

. (2xfT
sm( 3 )

f
The approximate width of this blurring function is given by the condition
Af = 3/(2T). Recall that for the full Fourier transform, the resolution is approxi-
mately 1/7. In using 1/3 lags. we introduced another blurring, and we have lost a
factor of about 3/2 in resolution.

The kind of blurring that we get with the Blackman-Tukey method is fundamen-
tally difTerent than the blurring that we get when we use a taper (Section 3.4). With a
taper, it is the Fourier transform that is blurred; with Blackman-Tukey, it is the
spectral power. This difference is important. A spectral amplitude that is rapidly
varying will be averaged to zero if the blurring is done with a taper. However, with
the Blackman-Tukey method, a rapidly varying amplitude does not necessarily
averaga to zero, since the process of squaring can make the function positive over
the region of blurring.

If resolution is lost, why use the Blackman-Tukey method? One reason is because
blurrir.g is sometimes desired. Drift in the time scale behaves like phase modulation,
and can introduce spurious frequencies. We will discuss this at length in Section 5.1.
Blackrnan-Tukey blurring can average these sidelobes into the main peak, and
thereby give a better estimate of the true power. Note that windowing of the data
with a taper function will not have the same eflect, since the sidelobes will not have
the same phase, and if averaged in amplitude, they can reduce the strength of the
spectral peak. We'll demonstrate this property with examples.

But this advantage only works if the variations in sedimentation that are being
compensated are small enough that the width is only broadened a little. Suppose the
sedimentation rate were different in the two periods 0-300kyr. and 300-600 kyr.

———
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Fig. 3.7. Eccentricity spectrum, using FFT and {/3 lags Blackman-Tukey.

Then the apparent frequencies of the 100yr cycle would be different in those two
records. The Blackman-Tukey method would average the two peaks together. Note
that using large lags (e.g. 1/3) makes the least sense when tuning is used, since tuning
(if done correctly) removes the low frequency drifts.

3.3.1 Example: eccentricity

As a vivid example of the loss of resolution that can result by the unthinking
application of the Blackman-Tukey method with 1/3 lags, we show the spectrum
of eccentricity for the period 0-600 kyr, calculated in three different ways. In Fig. 3.7
we show the spectrum from an unpadded FFT, and from the Blackman-Tukey
method. In the FFT plot, the separation between the 400kyr peak (f = 0.0025)
and the 100kyr peak (f = 0.01) is clear. In the Blackman-Tukey plot, the peaks
are not even resolved (by the Rayleigh criterion, the dip in the centre should drop to
half the maximum of the nearest peak). Of course, it makes no sense to use 1/3 lags
for eccentricity, since the time scale is perfectly known. In Fig. 3.8 we show the
spectrum calculated using the FFT with zero padding. With this method, the full
triplet of eccentricity peaks is easily resolved.

3.3.2 Example: Site V12-122

We'll illustrate the value of the Blackman-Tukey method by showing several spectra
from an historically interesting data set published by Broecker and Donk, for Site
V12-122, for the relatively short time period of 0 to 370 kyr. First, we show the data,
in Fig. 3.9.
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Fig. 3.8. Eccentricity spectrum using FFT with zero-padding.

— o~ Y

0 50 100 150 200 250 300 350
age (kyr)
Fig. 3.9. 6'*0 for Site V12-122.

If we plot the unwindowed periodogram for these data, we get the spectrum
shown in Fig. 3.10.

The Blackman-Tukey spectrum, with lag of 2/3. is shown in Fig. 3.11. The
spectrum appears smoother and more readily interpretable. There appear to be
two major peaks. one near frequency 0.01, and one near 0.03 cycles/kyr.

In Fig. 3.12 we show the result of using a lag of 1/2. The pattern is becoming
evident. The shorter the lag used, the greater is the blurring of the spectrum. In Fig.
3.13. we show the results of using a lag of 1/3. And finally, in Fig. 3.14. we show the
Blackman~Tukey spectral estimate for a lag of 1/4.

From looking at these. we would probably pick the lag of 1/2 as the most useful
for determining the frequencies and relative powers of the peaks. What would you
pick? (Remember. there is no “right”” answer.)

As we mentioned earlier. there is another reason for using the Blackman-Tukey
method. The Blackman-Tukey book was published in 1958, several years prior to
the introduction of the FFT. Prior to the FFT. the calculation of Fourier transforms
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Fig. 3.10. Spectrum of Vi2-122, no window.
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Fig. 3.11. Blackman-Tukey Spectrum V12-122, lag 2/3.

was a slow process that used a lot of computer time. A Fourier transform of N points
would require the calculation of N? sines and cosines. For the computers of the day,
even relatively small values for N (such as 1000) were a considerable expense. The
Blackman-Tukey method saved substantial time by reducing the size of the data set
by a factor of the lag. If the data had chatter, then there was no loss; in fact, if the
sidelobes were brought back into the main peak, the estimate of spectral power was
improved.

But even more time was saved by the fact that the autocorrelation function is
symmetric. This meant that in taking its Fourier transform, only the cosine
components need be calculated. This saved an additional factor of two. The corre-
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Fig. 3.12. Blackman-Tukey of V12-122, lag 1/2.
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Fig. 3.13. Blackman-Tukey of VI2-122, lag 1/3.

sponding disadvantage is that the method does not give any of the phases of the
Fourier components. But if all you need is the power estimate, then this could be
corsidered a worthwhile saving of time, at least in the pre-FFT days of slow
coraputers.

A second disadvantage of the Blackman-Tukey method is that you have
to estimate the proper lag to do before you do the calculation. If you then want
to apply a different lag, you have to redo the entire calculation. In their book,
Blackman and Tukey recommended starting with the value 1/3 for the lag, but
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Fig. 3.14. Blackman-Tukey of V12-122 with lag 1/4.

then varying it until it gave the best performance. However, the paleoclimate com-
munity has rarely done this in practice. In the period 1976 to 1995, the vast bulk of
spectral analysis carried out by the paleoclimate community used the Blackman-
Tukey method with 1/3 lags. Few papers ever mention other lags. (Actually, we are
not aware of any paper that used the Blackman-Tukey method with lag other than
1/3, although we haven’t studied every paper written during that period.) Lags of 1/3
became the de facto standard, even in software programs distributed within the
community. The result was a loss of resolution, and the missed discovery that the
100 kyr peak was single and narrow, in disagreement with the predicted structure
from the Milankovitch models.

3.4 TAPERS

Tapering i1s a very simple, very clever mathematical technique that is extremely
popular in spectral analysis. Instead of doing spectral analysis on the data f(¢),
the analysis is carried out on the data multiplied by a taper function g(1), also called
the window function. The function g is usually taken to be a simple, slowly varying
function, often going to zero (or close to it) near the edges. Several important tapers,
for the interval t =0 to T, are:

Sine taper g(t) = sin(wt/T)

Hanning (offset cosine) taper g(t) = (1/2)(1 — cos(2nt/T))
Hamming taper g(t) = .54 — 46 cos(2mt/T)
Parzen or Bartlett (triangle) window gty =1 - ~T/2)/(T/2)
Welch (parabolic) window g(ty =1 = (t = T)2)*/(T)2)*
Daniell (untapered or rectangular) window  g(¢) = 1
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The last of these is included only t?ecause .window‘ing is so common that even an ‘
untapered (unwindowed) spectrum is sometimes relerre§ to as if It were.
The clieet of tapering is sometimes described as reducing the artificial presence of
the high ITequencies generated by fact that the data end suddenly at r =0 and 1 = 7.
[n fact. if discontinuities are present in the original signal. then the Fourier transform
introduces distortions at those locations, a property known as the Gibbs phenom-
enon. Ol course, tapering also introduces distortions. You just have to decide which
kinds ol distortions are more acceptable.
The ability of tapering to suppress high frequencies generated by sharp changes |
finds a very practical use in optics (especially radar) where the radiation pattern is
the Fourier transform of the aperture function. A tapered aperture had significantly
reduced sidclobes. This effect is shown in the following example. Let

D

I = sin(271/95) + sin(27t/125)

represent data with two oscillations, one with period 95kyr and the other with
period 125kyr, analogous to eccentricity. We will apply a Hanning taper to the
data. (In Appendix 2, we give explicit code for calculating the spectral power with
ard without the taper.) The results are shown in the two plots of Fig. 3.15. The solid ' :I
fine is the spectrum of the untapered data; the dotted line is that of the tapered data.

Both plots show the spectral power; the left one is a linear plot, and the right one is a I
semilog plot.

It is clear from the linear plot on the left. that application of the taper has severely ‘14
degraded the resolution. It is equally clear from the right plot that the sidelobes of |
the tapcred spectrum are much reduced. If your primary interest is in the resolution !
ol the two peaks, then the untapered periodogram is superior. [f your primary !
interest is to reduce the bias that sidelobes from these peaks could apply to other
nearby peaks, then the tapered spectrum is superior.
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Fig. 3.15. Effect of tapering (dotted line) on a doublet peuk.
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The effect of the windowing can most easily be understood when the spectral
analysis is done by a Fourier transform. The Fourier transform of a product is
equal to the convolution of the Fourier transforms of the individual functions:

FT(fg) = FT(f)- FT(g)

Because the taper functions are broad and slowly varying, their Fourier transforms
FT(g) are narrow. The effect of tapering the data then is to convolve the Fourier
transform with the narrow Fourier transform of the taper function. This amounts to
smoothing. The difference between this and the Blackman-Tukey smoothing is that
the smoothing is done in the complex Fourier space before the spectrum is squared.

The effect of tapering on the sidelobes can also be understood in terms of this
convolution. An untapered sine wave of length T is equivalent to an infinite sine
wave multiplied by a boxcar function. The Fourier transform of this is the transform
of an infinite sine wave, i.e. a §-function, convolved with the Fourier transform of the
boxcar. For a tapered sine wave, the Fourier transform is the é-function convolved
with the Fourier transform of the taper function. If the taper function has lower
sidelobes than the boxcar, then the spectral power of the tapered sine wave will also
have lower sidelobes.

It is also possible to invent tapers that increase the resolution of the spectrum, by
adding additional power at the ends, and decreasing the amplitude in the centre of
the data. For example, we could multiply our data by the taper

g(t) = (1 4 cos(2wt/T))/2

The spectrum that we get with this taper is shown Fig. 3.16. It has better resolution
than the untapered plot, and a more dramatic separation of the two peaks, but the
sidelobes are getting uncomfortably large, and the fraction of the power in the main
peaks is decreasing, making the spectrum more susceptible to background.
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Fig. 3.16. Spectrum of the doublet using a high-resolution taper.
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Some authors are adamantly opposed to tapering. Yuen has argued that tapering
is “statistically unsound™ (Yuen 1979, quoted in Percival and Walden, 1993, p. 215).
Fougere calls tapering “tampering” (quoted in Percival and Walden, 1993,
p. 2195).

3.5 LOMB-SCARGLE PERIODOGRAM

Lomb (1976) and Scargle (1982) improved on the simple periodogram by a slight
alteration. What they showed is that if the cosine and sine coefficients are normalised
separately (we’ll show explicitly what we mean by this in a moment) then the classic
periodogram can be used with unevenly spaced data, and yet the statistical behaviour
of the power is identical to the behaviour you would expect if you had evenly-spaced
points.

To calculate the Lomb-Scargle periodogram of a data set (7, y;), first calculate
the usual mean and the variance:

l N
F=% kZ.Vk
=
2 1 &
=N ;U'k 7]
For every frequency f, define the time constant 7 by
S~ sin(4xfty)
tan(4wr) = '
an(4nm) = S s )

Then the Lomb-Scargle periodogram estimate of the spectral power P(f) at
frequency f is given by

(S = P eosnf (o = 7)) [Salve = F)sin2nf (15— 7)]°
>y cos?2af (1 — 7) Ssin®2af (1 — 1)

This equation is less imposing than it looks. It has two terms, one for the cosine
transform. the other for the sine transform. Each term is normalised separately. The
only complication is that each frequency uses a different time offset 7. Other than
these changes. the equation looks just like an ordinary digital Fourier transform.

The Lomb-Scargle method has several advantages over the classic periodogram.
One. obviously. is that much paleoclimate data are not evenly spaced. Although this
can be handled by interpolation, the statistical effects of such interpolation can be
complicated. Secondly, there is a limit to the ordinary periodogram that comes about
from a process called aliasing. What this means is that two signals of different
frequencies can have identical sets of values if the samples are taken at exactly
even spacing. With unevenly-spaced data, this effect can be substantially reduced.
The net result is that the Lomb-Scargle periodogram can measure frequencies that
would be aliased in evenly-spaced data.

) |
P(f) =252

4
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One note of caution: although superior to many others, it takes a degree of
courage (recklessness?) to use the Lomb-Scargle method in the paleoclimate com-
munity. We have had referees, unfamiliar with the method, urging rejection of our
papers for using a method so “obscure”™ (Obscure, in this context, presumably
means that the referee had not heard of it.)

3.6 MULTITAPER ANALYSIS

We discussed in Section 3.4 how applying a taper (or window) to the data can reduce
the sidelobes of spectral lines, and thus reduce the “leakage™, i.e. the effect that
strong lines can have in putting excess power at adjacent frequencies. D. Thomson
recognised that the following problem had not been solved in a general way: how can
you achieve the best sensitivity for finding a small signal of known frequency in the
presence of another signal which had a different frequency and much greater power?
The solution turned out to be a procedure in which several different tapers were
applied to the data, and the resulting powers then averaged. This method is called
“multitaper analysis”.

The method is widely misunderstood. It has been incorrectly referred to as having
“high resolution”, although its basic idea is to trade resolution for sidelobe reduc-
tion. To apply the method, you must choose the number of tapers that you will
apply. If you use only a few tapers, the resolution will not be degraded as much, but
you will not get as great a sidelobe reduction. For the method to be optimum, the
tapers should be Slepian functions. These are not easily computed, and numerical
integration is usually employed. There are buiit-in Slepian functions available in the
optional Matlab Spectral toolbox, and they are quite fast. If you don’t have this, you
should consider an alternative suggested by Walden et al. (1995): you can do almost
as well using sine wave tapers instead of Slepian functions.

The advantages and disadvantages of the multitaper method are illustrated in Fig.
3.17. This plot shows two analyses of the signal y = sin(2xf,1) + sin(2nf>1) where
Ji=1/95 and f; = 1/125 cycles/kyr. (These, of course, are two important frequen-
cies present in the eccentricity variation.) Shown is a periodogram of the untapered
function, and multitaper analysis using four tapers. The periodogram is superior at
resolving the two close peaks, but the multitaper spectrum is superior at suppressing
sidelobes outside the main peak.

3.7 MAXIMUM LIKELIHOOD ANALYSIS

The maximum likelihood method is a generic approach to problems in statistical
estimation. If you have a model with adjustable parameters (e.g. the amplitudes of
eccentricity, obliquity and background), then you can calculate as a function of those
parameters the relative probability that your model would yield data that match the
real data. The parameters are then adjusted to maximise this relative probability.
The relative probability that the model and a set of parameters account for the data
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Fig. 3.17. Multitaper method compared to periodogram.

is called the likelihood. Many methods apply this approach, and differ only in the
details, e.g. what specific parameters they adjust.

In this section we will discuss an approach to spectral analysis developed by
MacDonald (1989). If the record is a noise process with a structured signal, this
method provides the best means of signal detection in the maximum likelihood sense.
We will describe the method. and then apply it to one of the historically most
interesting data sets, the stack used in the 1976 article. ‘““‘Pacemaker of the Ice
Ages” (Hays et al., 1976). We will show that the data clearly verify the discovery
cf the important 41 and 23 kyr peaks, but that the claim in that paper that they saw a
19 kyr peak is questionable.

The method consists of the following steps:

1. First select an acceptable false alarm probability. The selection is a matter of
judgement. If the probability is set too low, physically significant peaks in the
spectrum may be missed; if it is set too high, peaks that are due to noise will be
mislabelled as true peaks. A typical value might be 0.05. Then the chance of
identifying a noise peak as a true peak is 5%.

2. Calculate the normalised periodogram. (Note: if the record is a noise process
without any signal, this method is inappropriate.) If the data are not equally
spaced, use the Lomb periodogram instead of the FFT.

3. Identify the maximum peak and test it against the false alarm probability.

4. If the maximum peak meets the false alarm test, determine by least squares the
amplitude and phase of the sinusoid representing the peak.

5. Using the amplitude and phase information from the least-squares fit, subtract
the sinusoidal curve from the data. (Because the record length is left un-
changed, this method is superior to band-filtering out the peak.) Removal of
the peak also removes the disturbing sidelobes as the analysis continues, and is
the appropriate form of prewhitening. After peak removal, the variance in the
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Fig. 3.18. Spectrum of Pacemaker stack.

total record is reduced. The change in variance provides guidance as to the rate
of convergence of the peak removal process.

6. Recalculate the periodogram, and repeat the process of sine wave removal,
until no further peaks meet the false alarm criterion. The remaining series is an
estimate of the continuum part of the spectrum of the original series. The
continuum residual can then be analysed to determine the nature of the
noise or of the deterministic continuum.

We now apply this procedure to the “Pacemaker stack’ of Hays et al. (1976). The
first step is to do a spectral analysis. We did this-using the Lomb-Scargle method on
the 6'30 data of the stack. The resulting spectrum is shown in Fig. 3.18.

The maximum peak in the spectrum is at f = 0.01 cycles/kyr. Next, we do a least-
squares fit of the Pacemaker data to a sine wave with this frequency. The results are
shown in Fig. 3.19, plotted on top of the original 60 data. Next subtract this sine
wave from the data. The data, with the 100 kyr cycle removed, is shown in Fig. 3.20.

A new spectrum 1s calculated, and it is found that the strongest remaining peak is
at 41 kyr period. We obtain the best fit sine wave of this period, and subtract it from
the data. The process then continues. The four strongest periods removed in this
procedure turn out to be 102, 41, 140 and 69 cycles per kyr. When these have all been
removed, the spectrum appears as shown in Fig. 3.21.

The next peaks that are removed are at 23 and then at 46. When these have been
subtracted, the resulting plot looks as follows (Fig. 3.22).

The strongest remaining peak is at 30 kyr, followed by a pair at 20 and 19. How
many of these peaks were statistically significant? That is trickier to answer than you
might think. One conclusion is clear: the 19 kyr peak that was reported as significant
in the original Pacemaker paper, has extremely low statistical significance. There are
eight other peaks of greater statistical significance.

4 Sn—
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Fig. 3.20. Pacemaker residuals. 100 kyr removed. fit to 41,

The evidence presented in tavour of the 19 kyr peak, in the original Pacemaker
paper. was a Blackman-Tukey analysis using 1/3 lags. A plot using this method is
shown in Fig. 323 on a log plot. (The 19 is too small to see on a linear plot.)

The small peak at 19 is what led 1o the reported presence of this peak. But was it
real. or just 4 bump on top of a continuous red noise spectrum? Let us analyse the
data yet another way. In Fig. 3.24 we plot the Fourier spectrum of the Pacemaker
stick using 4 Hanning taper. A line marks the expected location of the 19 kyr peak.
Fhe Tocation of the 19 kyr peak occurs less than half way up the side of a peak near
the 20Ky period. We conclude that the 19kyr peak is not present in this analysis. It
MAS oL present in the Maximum Likelihood analysis. [t was doubtful in the original
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Blackman-Tukey analysis. We conclude that its presence is not statistically
significant. '
But the 19 kyr peak appears to show up in other data, e.g. the Vostok atmospheric
§1%0 (Fig. 4.19) and the terrigenous component from Site 721 (Fig. 4.23). Is it
worthwhile to reanalyse old data? Yes, it is necessary, if we are truly to look at all
the data as if for the first time. To untangie the mechanisms of the ice ages, it is very
important to know where signals appear, and where they don’t. Many people who
study paleoclimate believe that the 19 kyr signal showed strongly in the Pacemaker
stack—after all, that is where it was “discovered” (after having been predicted
theoretically). To solve a jigsaw puzzle, it is just as important to remove pieces
that were improperly placed as it is to put new pieces in their correct locations.
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38 MAXIMUM ENTROPY METHOD

The maximum entropy method (MEM) applies a mathematical approach that is
strikingly different from most of the other approaches described in this book. It
assumes that the true power spectrum can be approximated by an equation that
has a power series—but instead of making the spectrum proportional to that power
series, it puts the power series in the denominator! For a readable description of why
this makes some sense, see Press et al. (1993). It is full of advantages and disadvan-
tages, just the ingredients to inspire passion among spectral analysts. The maximum
entropy method finds the spectrum which is closest to white noise (i.e. it has a
maximum randomness or “entropy’) while still having an autocorrelation function
that agrees with the measured values—in the range for which there are measured
values. It has a curious feature: because it extrapolates the data to times outside the
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measured range, it yields spectral lines that are often much narrower than you would
get by any other method. But don’t be fooled by this into thinking that the method
can resolve spectral lines better than an ordinary periodogram. The narrowness of
these lines is one of the mathematical artifacts that can be misleading. It is worth-
while quoting Press et al. (1993) about MEM:

“The maximum entropy property has caused MEM to acquire a certain “cult”
popularity; one sometimes hears that it gives an intrinsically “better’ estimate
than is given by other methods. Don’t believe it. MEM has the very cute property
of being able to fit sharp spectral features, but there is nothing else magical about its
power spectrum estimates .. .. With noisy input functions, if you choose too high an
order, you will find spurious peaks galore! Some experts recommend the use of this
algorithm in conjunction with more conservative methods, like periodograms, to help
choose the correct model order, and to avoid getting too fooled by spurious spectral
Sfeatures.”

Tukey is quoted (by Priestley 1981, p. 606) as saying that the maximum entropy
method is suitable only for relatively “smooth” spectra. This makes it highly un-
suitable for data with a few narrow lines, as we have in paleoclimate. Recall that
Tukey supported the use of the ordinary periodogram for such cases.

Nevertheless, you will see the maximum entropy method used in paleoclimate data,
and there will be referees of your papers who will recommend—maybe even de-
mand—that you use it! A program to use it, based on an optional package available
in Matlab, is given in Appendix 2. Programs in C, Fortran and Basic are available in
Press et al. (1993). We show the spectral power calculated for the SPEcMaP §'O data,
with both a linear and a log plot, in Fig. 3.25. The analysis was done for the time
interval 0 to 600 kyr. The maximum entropy parameters were set as follows: the
number of coefficients was 250, and the number of frequencies was 800.

For comparison we show in Fig. 3.26 the maximum entropy spectral estimate for
eccentricity and orbital inclination. Note how the resolution obtained appears even
better than for the periodogram. However, notice that the ratio of spectral peaks is
quite different than in the periodogram.

3.9 CROSS SPECTRUM AND COHERENCY

Coherency is a statistical measure that is used to measure the similarity of two
records «(t) and b(¢) in frequency space. Suppose, for example, a(r) is a climate
proxy, and we would like to determine whether it is dominated by a theoretical
driving force h(r). We can examine the spectra of the two signals, and see if their
amplitudes are similar. This procedure can be made more formal by looking at the
following product function of the Fourier transforms:

C(f) = 4UNB"(/)

where A is the Fourier transform of 4. and B* is the complex conjugate of the
Fourier transform of 4. This simple product is given the fancy name ‘“‘cross spec-
trum™. The cross spectrum of a signal with itself is the spectral power. The cross
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spectrum is large only at those frequencies in which there is significant spectral power
in both ¢ and h. Some books like to define the cross spectrum as the Fourier trans-
form ol the cross correlation function. But. by the correlation theorem. that defini-
hon is the same as ours.

If you arc particularly intevested in whether the two signals are in phase with each
other. regardiess of amplitude, then we can take the cross spectrum, square it. and
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divide by the spectral powers of the individual signals. This gives:

[’
Po(/)Py(f)

There is a problem with this definition. It is identically equal to 1 at all frequencies.
This is mathematically trivial, but conceptually it happens owing to the fact that a
Fourier transform is a sum of perfect sine waves, and a perfect sine wave in signal
a(1) that has the same frequency as a sine wave in b(f) will always have the same
relative phase. In other words, they differ by a phase factor 4, but this is independent
of time. When we take the absolute square, we get |exp(i6)|* = 1. So measuring the
coherency of perfect sine waves makes no sense. Coherency is valuable only if we
have two signals that are varying with time, and that implies that they are not single
frequencies, but (at the minimum) a band of frequencies. Then it really is interesting
to see if they stay in phase, since if one is driving the other, they will.
We build this concept of a band into the definition of coherence by averaging over |

a frequency band. So the truly useful definition of coherency becomes:

VP (A O] |
coherency(/) =) = 15 (P 1)) :
By the brackets we mean that adjacent frequencies have been averaged. A typical
way to do this is to take two spectra that have N frequencies and average them three
at a time, resulting in a coherency that has N /3 independent values. If the coherency
is calculated by the Blackman-Tukey method, and 1/3 lags are used, then an aver- i
aging of adjacent points is automatic. This averaging is essential to make the coher-
ency into something useful.

We should mention that some authors prefer to show ~, the square-root of 42,
Unfortunately, the function ~ is also often called the coherency, so if the authors
don’t tell you, you may not know which convention they used (unless they use the
symbol 7).

Although the coherency is extremely useful in many fields, its value is limited by
the need to do the averaging. Resolution is lost, just as spectral resolution is lost in
the Blackman~Tukey method. As an illustration of this, we have calculated the
coherency of the Earth’s eccentricity and orbital inclination for the last 400 kyr in
Fig. 3.27. Note that the coherency is extremely high (> 0.9) in the vicinity of 0.01, i.e.
the 100 kyr peak. Because of the degraded resolution, coherency cannot distinguish
the 100 kyr peak of eccentricity from the 100 kyr peak of orbital inclination, any
better than the Blackman-Tukey method can.

Coherency measures only the phase relationship; it is insensitive to amplitude,
since in the definition we divided by the spectral powers. The process of tuning,
described in Chapter 5, adjusts a parameterised sedimentation rate to try to brin
the fluctuations of the data into agreement with those of the target. Thus a tune
data set is automatically made coherent with the target model. Since coherency i
insensitive to amplitude variations, it does not detect disagreements in amplitude,
such as the “*Stage-11" problem (see Section 8.2 on page 233). A small number 0
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Fig. 3.27. Coherency of cecentricity and inclination.

winng points (less than one every 100 kvr) can bring the phase of any 4O signal
jte agreement with that of any target (e.g. eccentricily); since amplitudes are
ignored by coherency, the two signals will be in apparent complete coherency. The
same procedure will yield agreement between 6O and orbital inclination. However,
orbiral inclination and eccentricity cannot be so adjusted. since their time scales are
well known. But with one tuning adjustment. we could make an adjusted eccentricity
coherent with inclination over 800 kyr! This illustrates the limitation of the use of
coherency: (it becomes virtually useless—maybe worse than useless (since it repre-
senis cireular reasoning)—when working with tuned data.

3.10  BISPECTRA

The bispectrum of a data sct is the simplest of the statistical quantities known as
“hicher order™ spectra. Bispectra measure an aspect of data which is ignored in the
usuad spectral estimation (whether it be periodogram. Blackman-Tukey. or multi-
taper,, which is the coherency relationship between several frequencies present in the
data. Bispectra have proven invaluable in the analysis of many complex phenomena.
both in mechuanics and in geophysics.

Brictlv. a bispectrum shows a peak whenever two conditions are [ulfilled: (1) a
triplet ot (requencies /;. /. and f;. are present in the data that obey the relationship
fi2-1= 1. and (2) the phase relationship between the three frequencies is coherent
for at Teast a short averaging time for a band near these [requencies. Such frequency
relationships oceur trequently in astronomy. They are generated in the nonlinear
processes that create the orbital chunges for the Earth. The usefulness of the
bispectrun is simple: if a driving force (e.g. eccentricity or inclination) has frequency
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Fig. 3.28. Bispectrum of SPECMAP stack. Note that the figure is symmetric about the diagonal.

triplets which are coherent, then we expect the response (i.e. climate) to contain the
same frequency triplets. So, for example. if §'80 is driven by eccentricity, it should
have the eccentricity triplets in it.

We have included an appendix that describes the properties of bispectra in some
detail. In this chapter, we will confine ourselves to giving several examples of its use.
A plot of the bispectrum has two axes, representing the frequencies f; and f>,. We
then calculate the amplitude of a coherent signal f; in the data, and plot that
amplitude at the location (f;, f;). Thus, any amplitude on the bispectral plot
indicates the presence of a triplet. We make full use of these plots later, e.g. in
Section 8.6.

For an example, we plot in Fig. 3.28 the bispectrum for the SPECMAP 60 data,
using the corrected time scale discussed in Section 5.4. In Fig. 3.29 we show the
bispectra for the same time interval of eccentricity and orbital inclination.

The way to interpret these is as follows. Nonlinear processes in a driving force,
either eccentricity or inclination, result in coherent relationships between triplets
of frequencies. These same relationships are likely to appear in the bispectra of
the climate proxy. In addition, nonlinear processes in climate could add addi-
tional frequencies to the bispectra of the climate proxy that do not appear in the:
driving force. In Fig. 3.28. for example, we see several small peaks that are not
present in either eccentricity or inclination, for example, at (f], f2) = (0.01, 0.01).
This small peak implies the existence in the data of a harmonic at 0.02. This
harmonic is not in either driving force, and it should not necessarily be expected
to be.

It is clear from the figures that the bispectrum for inclination is a much bette
match to that of SPECMAP than is the bispectrum of eccentricity. We will return tos
this result when we discuss the bispectrum of Site 806 in Section 8.6.

|
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Fig. 3.29. Bispectra of eccentricity and orbital inclination.

3.1 STATISTICS OF THE FOURIER POWER SPECTRUM

The most common errors made in spectral analysis come from poor estimates of the
cficcts of background. By background. we mean all the fluctuations in the data that
come [rom something other than the feature (e.g. the spectral peak) under investiga-
tion. Background is not necessarily noise. It may be true climate variations. driven by
some mechanism other than astronomy. In fact, the background may be similar in
structure at different locations around the world.

An extremely important feature of the spectral power is that it does not obey the
statistics of a normal distribution. We will show that the statistics. under very general
condlitions. are exponential rather than Gaussian. What this means is that fluctua-
tions are much more common than would be expected from experience with other
data. [f the mean of the noise level is M, then the relative probability Prob of a peak
fluctuating up to a power p is given by

Prob(p) = cf(%)
rather than by the normal (Gaussian) equation

| L
e 20°
V2ro

The reason for this behaviour is straightforward. The Fourier amplitudes (but not
the Fourier power) do follow normal statistics. This is because the Fourier transform
1 a linear transform of the data points, which themselves are assumed to obey
Gaussian statistics. Both the real and imaginary parts are linear combinations of
the data points 4. By the Central Limit Theorem of statistics we expect the indi-
vidual Fourier amplitudes to have Gaussian statistics for both their real and ima-
gimary parts. So far, no surprises. If the /; average to zero. then the expectation value

Prob(p) #
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for the real and imaginary parts of the Fourier amplitudes R and [ is zero, and we
have the normal equations

Prob(R) = 2] et
o
L g
Prob(l)z\/2_7me 2w

But the results will be very different for the Fourier power. The probability of
obtaining a power p is the same as the probability of obtaining an amplitude 4
such that p = 4%, The probability of obtaining A4 is the joint probability of obtaining
any combination of R and / such that R> + I? = 42, This consists of all the points
that lie in a ring in the complex plane of radius 4 and thickness dA. Therefore we

write:

L _ L
Prob(p)dp = (—\/5_;56‘ 277 +m€ F>27rAdA
Ioya 42
= ﬁe_faTAdA
g

-
= -2—0—2(3 Zo-dp

This is the desired result. It states that the probability of obtaining a power P is
proportional to exp(—p/M), where M is the mean power (= 20?), i.e. it shows that
the distribution is exponential in character rather than Gaussian.

The exponential rule is extremely important but counter intuitive. It has several
implications that can surprise the unwary. These include the fact that large fluctua-
tions are very probable, particularly if you are accustomed to working with data that
have a normal distribution. The probability of getting a power equal to three times
the mean is exp(—3) = 5%. Thus, in random data, we expect to see peaks at levels
three times the average in 5% of the frequency bins. If there are 20 independent
frequencies, then we expect, on average, one of them to show a power greater than
three times the mean, just from statistical fluctuations. Thus *‘large’ fluctuations are
common in the Fourier power spectrum. This contrasts with normally-distributed
data, in which the probability of exceeding three standard deviations is 0.27%.

The rule also implies that the most likely power in any frequency is zero! (That is
when exp(— P/ M) has its maximum value.) The mean power. of course. is M. But it
is about twice as likely to get bins below the mean as it is to get peaks above the
mean. A similar paradox occurs in physics of any process with an exponential
distribution, e.g. radioactivity. If we have one atom which has a mean life of 7,
then when is the most likely time for it to decay? The answer is, at 1 = 0. That is
when exp(—¢/7) has its maximum value. This is easier to understand if you take a
large number of such atoms. Indeed the maximum decay rate will be at + = 0, and it
will decay exponentially after that. This result demonstrates that the most likely time.
to decay 1s at t = 0.
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Fig. 3.30. Random signal and its spectrum.

The net effect of these results is that even random data appear. to scientists
familiar with normal distributions. to have statistically significant peaks in it. This
is best demonstrated with Monte Carlo simulations. In Fig. 3.30, we generated semi-
random data by picking random numbers between 0 and | to represent the data
every 10kyr. Data for intermediate points (every kyr) was generated by interpola-
tion. The data and spectral power for one such plot is illustrated above. This plot
was the fourth one generated.

The apparent structure in the spectrum plot is misleading. It was selected over the
first three because it appeared to show a structure that a paleoclimatologist might
find interesting. There is a peak (maybe a split peak) near 0.0l and another set near
0.04. Could these be the eccentricity peak and the precession peak? With a little bit of
time-scale adjustment, perhaps the data could be made to fit this model. And yet, the
data were generated by a random-number generator!

The highest peak in the data has value 8. The spectrum has a mean of 1. so we
calculate (incorrectly, it will turn out) that the probability of getting such a peak is
exp(—8/1) = 3 x 10™*. However, there are approximately 60 independent data
points, and so 30 independent frequencies in the plot. This was the fourth one
generated. so we looked at a total of 120 different frequencies to find this one. So
the probability is 120 exp(—8) = 4%. This still seems statistically significant! In fact.
one might say “the peak is significant at the 96% confidence level”. We publish. But
it is nonsense! These are randomly generated data. Where did we go wrong?

The mistake we made is that we underestimated the background. To show this, we
generated 1000 different spectra. using the same random procedure that we used to
create Fig. 3.30, and then averaged the spectra. The result is shown in Fig. 3.31.

It is clear that the background is not the same at all frequencies. This is an
example of a “red” background that we will discuss it at more length in Section
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Fig. 3.31. Red spectrum from sum of many randomly-generated backgrounds.

3.13.1. Note that the background is high in the very region that we found the peak
we thought was significant. The average spectral power goes to zero at f = 0 because
we subtracted the mean before doing the Fourier transform.

It is not an accident that what appeared to be the most significant peak occurred
in this region. From this plot, you can see that the background level in the vicinity of
the peak is approximately 1.8, rather than 1. To estimate the statistical significance
of the peak, we need to calculate the ratio of its power to that of the background at !
the same frequency. So the correct estimate of the probability is 100 x exp(—8/1.8) =
.2 =120%. So we expect to find (on average) 1.2 peaks of similar statistical
significance in every four random data sets. -

The above example is meant to illustrate how easy it is to overestimate the
statistical significance of peaks, unless the background is well understood. It is
rarely the case that we have a complete model for the background, so what is
the next best approach? If we examine the spectrum again, we see that there is
evidence that the background in the vicinity of the peak is unusually high. In fact,
if we draw a background line through the data in the vicinity of the peak, it is quite
plausible that the background level is approximately 2 units. (Remember, accord-
ing to the exponential rule, about |/e of the data should be above the line, on
average.) Had the background level been estimated in this manner, then the mis- -
taken “high confidence level” prematurely estimated for the data would not have |
been derived.

The only way to be safe is to be conservative. For a peak truly to exist, it must be.
well above estimates of local background. Of course, if you are conservative, then you
might miss some discovery. The result is that the rule has been frequently broken in’
the literature by scientists whose papers got accepted only because they were report-
ing a discovery. Another result is that the literature is full of reported frequencies that
have turned out not to exist, once better data were available.

_
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312 PLOTTING POWER, LOG(POWER) AND AMPLITUDE

When plotting spectral power, the choice of axes becomes important, and contro-
versial. The plot that shows spectral power on a linear scale is very popular, but
many statisticians object strongly. They insist that only log plots are acceptable. and
anvone who makes a linear plot is simply showing their ignorance of statistics. Manyv
paleoclimate papers contain all their spectra using an ordinate proportional to the
~quare-root of the spectral power. They label the axis “amplitude™.

The choice of axis is not just a matter of taste. Each of the plots has its advantages
and disadvantages. Each of the plots shows something to its best advantage. and
~nows something else poorly. To illustrate this, we will use a particular data set
known as the SPEcMaP stack; we will describe these data more [uily in Section
i), We show the same spectrum (of Specmap data for the period 0-600kyr) in
ihree plots. Fig. 3.32 shows the spectral power; Fig. 3.33 shows the logarithm (to
saze ¢) of the spectral power, and Fig. 3.34 shows the square-root of the spectral
JOWeT.

“The value of the first plot, linear in spectral power. is that it gives an immediate
<cnse of how much of the variance comes from each cycle and how much comes from
oise. This is useful since variance has the nice property that amplitude doesn’t have:
“ris additive. By that we mean that the variance of the data is equal to the sum of the
variances ol the individual components. So. for example, you will often read in the
Hterature statements such as “the 41 kyr peak accounts for 50% of the variance™. To
the extent that such statements are uselul in evaluating signal strength, using an
arainate that is proportional to the spectral power is best. If the data are normalised
o unit variance and zero mean, by subtracting the mean and dividing every point by
ihe sample standard deviation. then the area under the peak shows the fraction of the
variance contained in any trequency interval. Subtraction of the mean is also useful
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Fig. 2.32. Spectral power for SPECMAP.
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Fig. 3.34. Square-root of spectral power, SPECMAP.

since any line at zero frequency contaminates the estimate of low frequency power.
Normalising also aids in comparison of spectra from different sites.

The linear plot also gives the most direct sense of the width of the peaks, since the
full-width at half maximum can be seen without even reading the y-axis. The linear
plot is the best plot if you are concerned about detecting evidence of an incorrectI
time scale (due to chatter or drift, which we discuss in Section 5.1). This sensitivity to
time scale error is sufficient to justify its use in many cases. |

The log plot puts the logarithm of the power on the y-axis. This plot is sometimes|
called a “‘semilog™ plot, since only the ordinate is logarithmic. and not the abscissa.
This kind of plot is the best one for making the statistical significance of peaks
evident, particularly for small peaks. As we showed in Section 3.11, the statistical?

l
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significance of a peak ot power P over a background B is exp(— P/B). ln paleoclimate
data the background B is often different at different frequencies. In the log plot. peaks
of equal statistical significance will be the same linear distance above the local
background level. That's why the log plot is [avoured by statisticians whose primary
mterest is evaluating the statistical significance ol small peaks. However, a log plot
makes it very difficult to see time-scale error, since the multiple peaks characteristic of
that kind of error are hidden among a welter ol background whose presence is
emphasised in the log plot.

In addition, the log plot can easily give a misimpression of the ¢/imare significance
of each peak. A peak can be statistically significant simply because the background
level in its region is small. But that doesn’t mean that the peak plays an important
role in climate. (This distinction is often confused in the public eye. A release of
radiation that is statistically significant can be reported to the public as a “*significant
release’”. and they will misinterpret it.)

Some people believe that the best ordinate to give a sense of climate significance is
the square-root plot. The square-root of the spectral power is the magnitude of the
spectral amplitude, and the square-root plot is often labelled “amplitude™. The
amplitude tells you the peak-to-peak variation in the climate proxy. Unlike the
spectral power. however, the sum ol the spectral amplitudes does not equal the
total amplitude variation in the signal.

{n the amplitude plot, Fig. 3.34, it 1s relatively easy to see that the amplitude of the
41 kvr peak is two to three times less than the amplitude of the 100 kyr peak. (The
uncertainty of 2 to 3 arises because of the uncertainty in the placement of the
background level.) One disadvantage of the amplitude plot is that the statistical
significance of the peaks is hidden. To calculate it you must find R the ratio of the
peak height to the background level. square it. and then calculate exp(—Rl). This is
not hard to do—but it is not as evident on the plot itself. All three of these plots have
been popular in the paleoclimate literature: often two kinds are given in the same
paper.

3.13 MONTE CARLO SIMULATION OF BACKGROUNDS

Monte Carlo simulations have proved to be indispensable in physics research. Typic-
ally. a simulation consists of the computer generation of signal buried in computer-
generated noise. The combination is then studied as it it were real. to see whether the
numerical methods applied to the data will pull true signal out of noise. Such lests
are frequently done before an experiment is even built, to see it it can achieve the
sensihivity that is needed.

A typical application is as follows. A student has performed a spectral analysis of
¢"™0 data. and notices what appears to be structure near the base of the peak. a
“shoulder™. Does this indicate that the data are not properly tuned, i.e. that the time
scale s not correct. so some spectral power is being leaked to adjacent frequencies?
Or does itindicate that the peuk has real structure? Or is it just a statistical fluctua-
ton? One way to address this question is to run 100 or more Monte Carlo simula-
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tions. For each simulation, the computer generates a real signal that is a pure sine
wave, with no shoulder, and a “random background signal” that i1s added to the sine
wave. The spectral power is calculated for each Monte Carlo simulation, and the
student tooks for a shoulder. If they see one in, say, 3 out of the 100 simulations, then
they know that random events can simulate the effect, but not very often. They might
properly conclude that the shoulder is not a random event but real, with a “97%
confidence level” since it did not occur in 97% of the simulations. But could it be due
to a poor time scale? To do this test, another 100 simulations are run, but for each
one the time axis is now changed in a small way that simulates what might happen
with real §'%0 data. Again, the student studies the simulated events to see how often
a shoulder appears.

The key technique in Monte Carlo simulation is the creation of background that
behaves in a way similar to the background you have in the real data. If the back-
ground in the simulation is not an accurate mirror of the background in the data,
then the conclusions drawn may be wrong. In this section we will discuss several
ways of generating background, and we give Matlab programs for these methods in
Appendix 2.

We have already presented one example of Monte Carlo simulation for Fig. 3.31.
We will repeat the procedure here. We create our background by generating random
numbers every 10 kyr, and doing a linear interpolation in between. This yields data
and spectra shown in Fig. 3.35. The spectrum plot shows the spectrum generated
from the data shown. Superimposed on the spectrum plot is the average spectral
power found by repeating the entire process 100 times, and averaging the results.

As you can see in the spectral power plot, there appears to be a strong peak near
frequency 0.017 cycle/kyr. Yet we know that these data were generated from random
numbers, so we know this peak is not real. It is an result of the fact that spectral
power shows statistical fluctuations which are exponential in their nature, and so
large excursions are more common than in other types of analysis.

We now estimate the statistical significance of this peak. The mean value of the
background in the vicinity of the peak is at spectral power = 2. The peak rises to a
value of 10. Therefore the probability of having it occur by chance, at this frequency,
is approximately Prob = exp(—10/2) = 0.0067. There are about 45 frequency bins in
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Fig. 3.35. Monte Carlo background and spectrum.
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the plot, and we would have been equally interested in any other peak that was
similarly high above the background. Thus, the probability that we would find
something of similar height 15 0.0067 x 45 = 0.30 = 30%. So in 30% of our
Monte Carlo simulations, we expect to see peaks with comparable significance—
even in data that we know contain no real peaks.

Fluctuations such as seen in Fig. 3.35 are common, yet even experienced scientists
can be fooled. We strongly urge every student of spectral analysis to spend a con-
siderable amount of time generating Monte Carlo plots, before publishing anything
from real data. There is no technique that is equally effective in showing how easily
we can fool ourselves. And the primary difference between a scientist and a layperson
is that the scientist is aware of how easily he can be fooled.

3.13.1 Red and white noise

Iu both of the examples given so far, Figs 3.31 and 3.35, the average spectrum tended
to peak near the low frequencies. This is an example of “red noise”. The name
derives from optical spectra, where the red signal is the low {requency component.
Many phenomena in physics show red noise. In many cases, the power spectrum of
the background shows a strong enhancement at the low frequency end proportional
to 1/f. Such noise is called (without showing much originality) “one over f/ noise’.
or sometimes ““flicker noise™. Noise in paleoclimate work is frequently red. This may
be because processes in the climate and in the ocean records tend to suppress rapid
variations, rather than because low frequencies are enhanced.

In Fig. 3.36 we have generated another simulation of background, using a slightly
different technique. It was created by generating a new random number for every
thousand years, and then taking a 15kyr running average of the results. This is the
kind of background we would have, for example, if climate were random but the sea
floor sediment was continually mixed to a depth of a few centimetres.

The plot on the left is an example of the dala generated in this method. The plot
on the right is the spectral power for this data set, and superimposed on it (as before)
is a plot of the average spectral power from 100 such simulations. The choice of
smoothing period allows us to adjust the redness of the spectrum. For example, if we
smooth the same random numbers we used above over 10 kyr, rather than |5, we get
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Fig. 3.36. Background [rom 15kyr smoothing. and spectrum.
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Fig. 3.37. Background from 10 kyr smoothing, and spectrum.
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Fig. 3.38. White background, and spectrum.

the data and spectrum shown in Fig. 3.37. Note that the spectrum is less red, i.e. its
average value does not fall off as quickly at high frequencies.

For contrast, we generate data with no smoothing. Let every data point, every
1 kyr, be random. The data and spectrum are shown in Fig. 3.38. Note the flatness of
the average spectrum. This is the kind of signal known as white noise, since all
frequencies are equally present. (This is the terminology, even though for the colour
“white” in optics, all that is demanded is equal contributions of red, blue and green,
the three colours of the eye sensitivity.)

A small spectral peak, appearing on top of a red background, will have the
frequency at which it achieves maximum power shifted slightly towards lower fre-
quencies. This is an example of “bias”. It is particularly troublesome if the goal of
your analysis is the precise determination of frequencies. To minimise the bias, you
can use a method called “prewhitening” that tends to flatten the background. This
method is discussed at length in the standard books on spectral analysis. Once the
spectrum is computed, you must then compensate for the prewhitening by adjusting
the measured spectral powers.

3.13.2 Prewhitening

Prewhitening can be used to compensate for red noise, or for the presence of an
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adjacent large spectral peak. The techniques are quite different. For red noise,
prewhitening is sometimes done by doing the spectral analysis not on the data,
but with a new set of points equal to the differences of adjacent data points. This
is equivalent to the process of taking a derivative of the data. We will show below
that taking the derivative is equivalent to multiplying the Fourier transform by a
lactor of frequency /. I the Fourier transform is defined as

H(f) = J‘w h(ne* ™ dr

- X

the Fourier transform of the derivative of the data is

8/1([) ) ™ ah(l)) ,2mift
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where we integrated by parts to shift the derivative to the exponential term. Thus
taking differences multiplies the Fourier transform by a term proportional to the
frequency /. The spectral power is multiplied by 12 Taking differences often over-
compensates for the observed red noise. which is typically proportional to 1/f.
Blackman and Tukey (1958) recommend that you try milder prewhitening. a partial
differencing: replace the data /i not by A/ (equivalent to taking the derivative) but
instead by (h — 0.6Ah). But they emphasise that you must look at the effect that such
prewhttening has on your data, and then change it to do a better job at flattening the
spectrum. There is no single prescription that works for all data.

Given the high signal to background levels seen in paleoclimate data, and the
uncertainty in the time scale. there is little to be gained by the prewhitening methods
discussed above, and most scientists no longer use them for such data. It i1s usually
sufficient to subtract the mean from the data (thus assuring that the zero frequency
bin. which represents the constant offset, will be zero), and sometimes to remove the
“trend”, i.e. the best fit to a constant slope. Removing the mean is common, but
many experts prefer not to remove the trend since doing so may bias both the power
and the Irequency estimates.

Another form of prewhitening that is valuable is the systematic removal of strong
peaks. as we discussed in Section 3.7. It consists of systematically finding the peaks.
and removing them one at a time. before proceeding with further analysis. When the
peaks have been removed, the bias that they might have caused is eliminated. [t is an
important technique, not so much for reducing bias, as it is for discovery of weak
peaks on the tails of stronger peaks, and for the estimate of the statistical signiticance
of such weak peaks.
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3.14 FREQUENCY ESTIMATION: THE HWHM RULE

The best estimate for the frequency of a spectral peak can be obtained by using the
maximum likelihood method: make a preliminary estimate of the frequency of the
strongest peak. Using the parameters of this peak as a starting point, perform a
maximum-likelihood fit (or a minimum chi-square fit) to the data. In this fit, the
frequency as the starting point should be a variable. Unfortunately, this method is
cumbersome, and rarely worth the effort. It is much simpler, and usually accurate
enough, to pad the data with lots of zeros, and then find the frequency from the
maximum of the periodogram.

But how accurate is this estimate? The primary error often comes from the
inherent bias from noise and, indeed, the elimination of such bias forms the bulk
of many texts on spectral analysis. Many methods have been developed to reduce
such bias, but most of these methods depend on the presence of well-characterised
noise. And lack of bias does ensure accuracy. The noise itself is a true climate
variation often reflecting local or even global conditions. So. for example, the
benthic 6'30 signal may reflect global ice, but it also includes a component reflecting
local climate variations such as systematic temperature and salinity variations (as
you would get, for example, if the deep thermohaline circulation changed).

The net result of this complexity is that you are often reduced to estimating the
effects of such bias, rather than attempting to compensate for them. The uncertainty
should be reflected in the error estimate for the frequency. For much paleoclimate
data the result is relatively simple: the uncertainty in the frequency estimate will be
approximately equal to £w, where w is the half-width at half-maximum of the peak
in the spectrum. Thus the frequency is determined only over a range of the full-width
at half-max of the peak. We call this the “HWHM rule”’. Obviously, this is not a
precise result that works in all cases. But we will show below why it is a reasonable
approximation for much paleoclimate data. More importantly, it is rare that one can
determine the frequency to an accuracy better than this. You will see papers in which
the period of the peak is stated to be J00kyr, and the authors will claim this is
incompatible with a theoretical prediction that the period should be 95kyr. But
although the peak of the spectrum may be at 100kyr, that does not mean that it
is an accurate determination of the true frequency, since background variations can
shift the peak.

The uncertainty in frequency arises from the effect of background on the peak.
Let us assume that the amplitude at maximum, in absence of background, is Ay,.
There is, of course, a phase associated with the amplitude. Typically the phase will
vary as rapidly as the amplitude, so that as we go away from the maximum value to
the half power point the phase will change by 45 degrees. The background also varies
in amplitude and phase over a similar change in frequencies.

To get an idea of the relative values of the signal and background, we show in Fig.
3.39 the §'%0 spectrum for Site 552 (Shackleton and Hall, 1984). The peak near
f = 0.01 cycles/kyr stands well above the background. Let us try to estimate the
background. It appears to be higher at low frequencies than at high ones, and the
high frequencies may include some non-background signals (e.g. the peak at 41 kyr
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Fig. 3.39. Site 552 spectrum.

period). There does appear to be structure on either side of the 100 kyr peak, at a
level of about 2 units. (The plot is normalised so that the average power is one unit.)
For the sake of discussion, let us accept this level as the background estimate. The
power of the peak is at 14 units. So the ratio of amplitudes of S/ B is approximately
J14/2=2.6.

The question at hand is: how much does the presence of B affect our estimate of S,
in particular. our estimate of the frequency at which S reaches its maximum? We will
estimate this by looking at the effect of changing the background, while keeping the
signal unchanged. (This can easily be done with Monte Carlo simulations, and the
reader 1s encouraged to try it.) Suppose, for example, that the amplitude Sy, of
V14 = 3.7 were partly due to constructive interference. To get its true value, subtract
the amplitude of the background B = v2 = 1.4, to get Stryue = 2.3. If, instead of
constructive interference, the background B happened to give destructive interfer-
ence, then the amplitude at this point would have been 2.3 — [.4 = 0.9. The peak
would not have been visible at all at this frequency. Back at the present half-power
points. the relationship between the background and the signal could differ by 90
degrees. so the amplitude at this frequency would be \/(2.322 + ].422) = 2.7, and
the power at this frequency would be 2.7° = 7.3, well above the noise. The peak
would be seen, but far removed from the correct frequency.

Anyone who wants to put uncertainty limits on a frequency estimate will learn a
great deal by doing Monte Carlo simulations. However it is clear that a peak cannot
be moved much further than its half maximum. In addition, it is clear that unless the
signal to background level is unusually high, that a movement of that much in
frequency has a reasonably high probability of happening. A more sophisticated
analysis requires a better characterisation of the background.

To illustrate the usefulness, and limitations, of the HWHM rule, we generated
40.000 Monte Carlo data sets, each containing a true 100 kyr peak, but with varying
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Fig. 3.40. Frequency determination vs. signal-to-background.

levels of random background. (The background was generated by choosing random
numbers every 10kyr, and interpolating in between.) For each data set, the period-
ogram was calculated, and the frequency of the maximum power (with period
between 80 and 120 kyr) was recorded. The average error was the frequency differ-
ence between this value and the true value (0.01). In Fig. 3.40 we show the error,
normalised to the half width at half maximum, plotted as a function of background
level.

The plot demonstrates that at very high signal/background levels (20), the fre-
quency can be determined to within about 30% of the half width of the peak. For
more typical data (signal/background = 7), the accuracy is equal to the half width.
When the signal/background drops to 5 or below, the frequency determination
becomes very inaccurate.

3.15 SPECTRAL WIDTH AND SHAPE DETERMINATION

Suppose we have a climate proxy A(¢) which consists of a pure sine wave present for a
time T. Moreover, assume that 4(7) is zero outside of this time. Then the untapered
periodogram will show a peak proportional to the square of a sinc function:

(Sin(27r(.f —fm))z
2e(f — )T

If the observed spectral peak has this shape, then nothing intrinsic to the shape is
observable, and we say the peak is unresolved. However, if the signal is the sum of
two or more sine waves. or has an amplitude that varies with time, then the shape
can become complicated. The case of two sine waves is particularly interesting, since

such doublets are common in orbital parameters. The other important case for |
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[ wo spectral lines are sufficiently close in {requency, then they will appear to be a
ngle peith with a somewhat broader shape. How close can they be? This issge hgs
, rccl‘i\t‘\l a wreat deal of study @nd analysis. see. for example, a lengthy section in
Priestley (1981). The limit is set, in part, by the shape of the spectral peak, and that.
i turn. depends on the method of analysis. The most widely used equation is the
~Ran leigh Criterion™, originally applied to images in a telescope. Rayleigh decided
that Iwo stars ol equal brightness could be “'resolved™ if the maximum intensity of one
qar Tell on the first zero (minimum intensity) of the other. However, in optics the
relescope image of a star is equal to the square of the Fourier transform of the
aperture e LS the spectral power! So the Rayleigh criterion can easily be used in
spectral analysis. Fora simple sine wave, the |ﬁrst zero in the spectral power occurs at

A =+
This looks very similar to the uncertainty principle criterion—with good reason,
<inee the width of the spectral lines determines the resolution. We will illustrate
this equation with an example. The eccentricity of the Earth’s orbit contains oscilla- B
tions with period 95 and 125 kyr. Let us consider a simple function consisting of two !
sine waves with these periods:

hit) = sin(2m1/95) + sin(271/125)

They should be “Rayleigh resolved™ when

95 125
To illustrate this, we show in Fig. 3.41 the spectral power for /i(1) for the time
mterval 1 0 1wo 400 kyr.

Several features of this plot are worth noting. The first is that the two peaks
appear to be “super resolved”—the spectral power in between the two peaks goes
o zero. This is much better than Rayleigh required. The reason is that the two
stgnals. at frequencies 0.008 and 0.0105 cycles/kyr. interfere with each other to
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Fig 341, Rayleigh Criterion example: 95/125kyr peaks.
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give the cancellation. A similar feature does not occur with stars, because stars are ;
incoherent, and do not interfere with each other. But the super resolution is not
always achieved. Since it requires a cancellation, it depends on the relative phases
of the two signais. If we add a 90 degree phase shift to one of thé signals, the dip
between the two peaks is not nearly as deep.

A second important feature is that the maxima of the individual peaks do not
occur at the expected frequencies. The peak on the left actually reaches its maximum
value at f = 0.0075 = 1/133, i.e. it corresponds to period 133 kyr, not at 125kyr.
This disagreement is a consequence of the fact that this peak is sitting on the side-
lobes of the other peak. This tilts the peak and, in this case, moves the maximum to a
lower frequency (higher period). The degradation for close peaks is known as the
Cramer-Rao bound (Rife and Boorstyn, 1974, 1976; van Trees, 1968). In general, the
estimate of the frequency degrades when the frequencies become closer than 2/7T,
and that is the effect we are seeing here. However, if precise frequency estimation is
important (and only if low levels of background suggest it is possible; see Section
3.14) it is easy to avoid the Cramér-Rao restriction by doing the frequency estima-
tion using the pre-whitening approach advocated by MacDonald (see Section 3.7). In
paleoclimate data, the Cramér-Rao limit is rarely important, since the uncertainty
(the half-width at half-maximum) will be much larger than the bias.

In Fig. 3.42-Fig. 3.44, we plot the separation of the two peaks for various time
intervals 7. For T = 250 kyr (Fig. 3.42), the peaks are unresolved; however it is clear
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Fig. 3.44. 95/125 kyr peaks with interval T = 600 kyr.

that it is broad and is more than a single frequency. For T = 300 kyr (Fig. 3.43), the
peaks are not separated, yet are resolved.

The spectral power for T = 600 kyr is shown in Fig. 3.44. Note that the peaks are
not as well separated as they were for 7 = 400 kyr. With this time interval, the bias
in the frequency maxima is much smaller, but still present. The low frequency peak
reaches its maximum at 0.00796 = 1/125.5, rather than at 0.08 = 1/125. This
Cramér-Rao bias could be serious in the communications industry, but it 1s far
too small to be important in paleoclimate work.

Next we consider the effects of background on shape determination. Such effects
can be substantial, since background fluctuations can be large. [f the background
level is B, then the probability that it reaches a level C for any given data point is
exp(—C/B). (This is an immediate consequence of the fact that the background has
an exponential distribution, as discussed in Section 3.11.) This effect of background
is best illustrated by a numerical example, similar to the one we gave when discussing
frequency estimation. Let the spectral power of a peak, in the absence of back-
ground, be P. Let the average spectral power of the background, in the vicinity of
the peak, be A. Let us assume that P = 3B. That seems like a reasonable ratio; it
means that the probability that a random background peak could reach as high as P
1s exp(—3) = 0.05, corresponding to a 95% confidence level. But although it is not
terribly likely that the background will fluctuate that high, it is much more likely that
the background will cancel the peak into insignificance. How can that be? Let us
assume that the actual background in the vicinity of the peak has value B, but that it
also happens to have the opposite phase from P. (This will happen about 25% of the
time.) The Fourier amplitude of the peak is v/P. The Fourier amplitude of the
buckground is v/B. The net amplitude is P — VB = (V3 = HVP =0.732/P. and
the observed power will be (0.732V/P)*= 0.54P. Recall that by itself, P was three
times background. This partially cancelled peak will only be 1.6 times background.
The experimenter will determine that its statistical significance is only
exp(—1.6) = 0.2. That places it at the 80% confidence level.

The lesson here is that background can be more bothersome in its tendency to
cancel real peaks, than in its ability to fluctuate up and cause false ones. This is
particularly important in the case of theories that attribute the 100 kyr peak to
ceeeatricity. The eccentricity model attributes the 100 kyr peak to the 95kyr cycle
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Fig. 3.45. Monte Carlo simulations: eccentricity + background.

of eccentricity, and the statistics are usually compatible with this identification (since
you can rarely measure the frequency of a peak in paleoclimate data to better than a
full-width at half-maximum). But the 125kyr peak is missing. Could it have been
accidentally cancelled by background? The answer is yes—if the background level is
as high as one-third of the peak ievel.

However, if the background is significantly lower than one-third of the peak level,
such cancellation becomes increasingly improbable. In Fig. 3.45 we show 100 Monte
Carlo simulations of eccentricity added to background. in which the average level of
background was ten times lower than the height of the expected 125 kyr peak. In the
100 spectra shown (each one with a different random background), the doublet
nature of the peak is not significantly cancelled. This is not surprising, since to cancel
would require both that the phase of the background be opposite to that of the peak
(a 25% chance) and that the background spectral power fluctuate upwards to a
significant fraction of the peak power.
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