Read Chapters 10–13 of Srednicki.

1. Let \(\Theta = \hat{C} \hat{P} \hat{T} \) denote the product of charge conjugation, parity, and time-reversal. The combined transformation is an anti-unitary operator and is a symmetry of all Lorentz-invariant field theories. The transformation acts on an operator \(\hat{A}(x) \) as \(\Theta \hat{A}(x) \Theta^{-1} = \pm \hat{A}(\hat{-}x)^\dagger \), with a + sign for CPT-even operators, and – for CPT-odd operators. Assume that the vacuum state of a CPT (and translation) invariant theory is unique, and hence necessarily CPT invariant, \(\Theta |0\rangle = |0\rangle \).

 (a) Using the anti-unitarity of \(\Theta \), show that \(\langle 0| \hat{A}(x) |0\rangle = -\langle 0| \hat{A}(\hat{-}x)^\dagger |0\rangle \) if \(\hat{A} \) is CPT-odd, and explain why this implies that \(\langle 0| \hat{A}(x) |0\rangle \) vanishes. [Hint: regard the expectation value as the inner product between the bra \(|0\rangle \) and the ket \(\hat{A}(x)|0\rangle \].

 (b) If \(\hat{A} \) is either CPT even or odd, show that CPT plus translation invariance implies that \(\langle 0| [\hat{A}(y), \hat{A}(x)^\dagger] |0\rangle = -\langle 0| [\hat{A}(x), \hat{A}(y)^\dagger] |0\rangle \). Show that this implies that the spectral density of \(\hat{A} \) and \(\hat{A}^\dagger \) is an odd function, \(\chi(q) = -\chi(-q) \).

2. Let \(M \) be an arbitrary \(N \times N \) real symmetric matrix which is positive definite.

 (a) Consider the multi-dimensional Gaussian integral \(Z = \int d^N \phi \ e^{-\frac{1}{2} \phi^T M \phi} \), with \(\bar{\phi} \equiv (\phi_1, \cdots, \phi_N) \) an arbitrary real \(N \)-component vector. Prove that \(Z = [\det(M/(2\pi))]^{-1/2} \).

 (b) Consider the shifted Gaussian integral \(Z[J] \equiv \int d^N \phi \ e^{-\frac{1}{2} \phi^T M \phi + J^T \phi} \), with \(J \) an arbitrary \(N \)-component vector. Evaluate \(Z[J] \) (by suitably shifting integration variables). Does the validity of the result depend on whether \(J \) is real or complex?

 (c) Let \(\langle \cdots \rangle \) denote averages in the normalized Gaussian measure \(d\mu \equiv Z^{-1} d^N \phi \ e^{-\frac{1}{2} \phi^T M \phi} \), so for any function \(F(\phi) \), \(\langle F(\phi) \rangle = Z^{-1} \int d^N \phi \ e^{-\frac{1}{2} \phi^T M \phi} F(\phi) \). Averages of products of the components of \(\phi \) are referred to as moments. Show that \(Z[J] \) is a generating function for all such moments by explaining how to extract an arbitrary moment \(\langle \phi_{i_1} \phi_{i_2} \cdots \phi_{i_k} \rangle \) from \(Z[J] \).

 (d) For any Gaussian measure, the matrix \(M \) defining the measure is known as the covariance matrix. The inverse of this matrix, \(G \equiv M^{-1} \), is the variance matrix. Show that:

 i. All odd-order moments of a Gaussian measure vanish.

 ii. \(\langle \phi_i \phi_j \rangle = G_{ij} \).

 iii. \(\langle \phi_i \phi_j \phi_k \phi_l \rangle = G_{ij} G_{kl} + G_{ik} G_{jl} + G_{il} G_{jk} \).

 iv. \(\langle \phi_{i_1} \phi_{i_2} \cdots \phi_{i_{2k}} \rangle = \sum_{\text{pairings}} G_{\pi_1 \pi_2} G_{\pi_3 \pi_4} \cdots G_{\pi_{2k-1} \pi_{2k}} \), where the sum runs over all ways of grouping the set of indices \(\{i_1, i_2, \cdots, i_{2k}\} \) into distinct pairs \(\{\pi_1, \pi_2\}, \{\pi_3, \pi_4\}, \cdots \{\pi_{2k-1}, \pi_{2k}\} \). (For arbitrary \(k \), what is the number of distinct pairings?)

 (e) Now consider complex Gaussian integrals: let \(M \) be an arbitrary complex Hermitian \(N \times N \) matrix which is positive definite, and define the complex Gaussian integral, \(Z = \int d\phi \ d\bar{\phi} \ e^{-\phi^T M \phi} \), and its shifted generalization, \(Z[J] = \int d\phi \ d\bar{\phi} \ e^{-\phi^T M \phi + J^T \phi} \). Here \(\bar{\phi} \equiv (\phi_1, \cdots, \phi_k) \) is an arbitrary complex vector, as is \(J \), and \(d\phi \ d\bar{\phi} \) is short-hand for independent integration over the real and imaginary parts of each component of \(\phi \): \(d\phi \ d\bar{\phi} \equiv \prod_{k=1}^N d(\text{Re}\phi_k) d(\text{Im}\phi_k) \). Generalize each of the previous parts to this case. You should find that:

 i. \(\langle \phi_{i_1} \cdots \phi_{i_m} \phi_{j_1}^* \cdots \phi_{j_n}^* \rangle = 0 \) if \(m \neq n \).

 ii. \(\langle \phi_i \phi_j^* \rangle = G_{ij} \), where \(G = ||G_{ij}|| \) is the inverse of \(M \).

 iii. \(\langle \phi_{i_1} \cdots \phi_i \phi_{j_1}^* \cdots \phi_{j_n}^* \rangle = \sum_{\text{permutations}} G_{i_1 \pi_1} G_{i_2 \pi_2} \cdots G_{i_k \pi_k} \), where the sum runs over all permutations \(\pi = \{\pi_1, \cdots, \pi_k\} \) of the indices \(\{j_1, \cdots, j_k\} \).

3. Multi-dimensional saddle-point integrals. Consider a multi-dimensional integral of the form \(I(\lambda) \equiv \int d^N x \ e^{-f(\vec{x})/\lambda} \), where \(f(\vec{x}) \) is a smooth function with a global minimum at \(\vec{x} = \vec{x}_0 \).
(a) Find the small λ asymptotic expansion of $I(\lambda)$. Specifically, show that $I(\lambda) \sim e^{-f(\vec{x}_0)/\lambda} \times \det \left(f''(\vec{x}_0)/2\pi\lambda \right)^{-1/2} \left(1 + \sum_{n=1}^{\infty} I^{(n)}(\lambda)n \right)$, with $f''(\vec{x}) \equiv \left\| \frac{\partial^2 f(\vec{x})}{\partial x_i \partial x_j} \right\|$ the curvature matrix of f.

(b) Evaluate $I^{(1)}$ and $I^{(2)}$ (in terms of derivatives of f). Collect equivalent terms and simplify as much as possible.

(c) See if you can construct an algorithm for computing the coefficients $I^{(n)}$, at arbitrary order, based on drawing a suitable set of graphs (or diagrams) and associating every line with a “propagator” equal to the inverse of the curvature matrix evaluated at \vec{x}_0, $G_{ij} \equiv \left(f''(\vec{x}_0)^{-1} \right)_{ij}$, and every vertex at which K lines meet with some factor proportional to the K-th derivative of $f(\vec{x})$ evaluated at \vec{x}_0, $\Gamma_{i_1 \cdots i_K}^{(K)} \equiv \left. \frac{\partial^K f(\vec{x})}{\partial x_{i_1} \cdots \partial x_{i_K}} \right|_{\vec{x}=\vec{x}_0}$. For each such contribution, you will also need an overall factor equal to the inverse of some integer — what determines this integer?