

Recommended reading: Chapters 37–44 of Srednicki.

1. Dirac Fermions. Consider a theory of free Dirac fermions, with the usual Hamiltonian, $\hat{H} = \int d^3x \bar{\psi}(x) (\gamma \cdot \nabla + m) \psi(x)$. Using the standard mode expansion for a Dirac spinor, show that the free time-ordered propagator $S(x)_{\alpha\beta} \equiv \langle 0 | \mathcal{T}(\psi_\alpha(x) \bar{\psi}_\beta(0)) | 0 \rangle$ is a Green's function for $i(\gamma^\mu \partial_\mu + m)$. What is its Fourier transform $\tilde{S}(p)$? (Make sure your resulting Fourier representation for $S(x)$ is well-defined for Minkowski x .)
2. Wick's theorem for fermions. Consider the time-ordered correlation functions,

$$G_0^{(n,m)}(x_1 \dots x_n; y_1 \dots y_m) = \langle 0 | \mathcal{T} \left(\psi(x_1) \dots \psi(x_n) \psi^\dagger(y_m) \dots \psi^\dagger(y_1) \right) | 0 \rangle$$

in a theory of non-interacting fermions governed by some Hamiltonian $\hat{H} = \int d^3x \psi^\dagger(x) h \psi(x)$, where the one-particle hamiltonian h (some spatial differential operator) may have eigenvalues of either sign, and the state $|0\rangle$ is the resulting ground state of the theory. Prove that

$$G_0^{(n,m)}(x_1 \dots x_n; y_1 \dots y_m) = \delta_{nm} \sum_{\pi} \sigma_{\pi} G_0(x_1, y_{\pi_1}) G_0(x_2, y_{\pi_2}) \dots G_0(x_n, y_{\pi_n}),$$

where the sum runs over all $n!$ permutations π of the set $\{1 \dots n\}$ and σ_{π} is the signature of the permutation (+1 for even permutations, -1 for odd). One recommended approach is:

- (a) Show that the propagator, $G_0(x, y) \equiv \langle 0 | \mathcal{T}(\psi(x) \psi^\dagger(y)) | 0 \rangle$, satisfies the linear equation of motion, $(i\partial_t - h) G_0(x, y) = i\delta^4(x - y)$, where $x^0 \equiv t$.
- (b) Show that the linear operator $\mathcal{K} \equiv i\partial_t - h$ is invertible if all times are analytically continued to a line in the complex time plane which is rotated away (clockwise) from the real axis by an angle $0 < \theta < \pi$ (provided h itself is invertible). Expand $G_0(x, y)$ in an appropriate basis in which one can invert \mathcal{K} , and solve for the propagator. Show that the result is the same as that obtained by directly computing the propagator by expanding $\psi(x)$ and $\psi^\dagger(x)$ in terms of creation and annihilation operators for eigenmodes of h . (What is the ground state $|0\rangle$ if h has both positive and negative eigenvalues?)
- (c) Derive the corresponding equation of motion for the higher correlation functions $G_0^{(n,m)}$ with arbitrary numbers of operators. Explain why this equation must have a unique well-behaved solution when all times are analytically continued as described above.
- (d) Show that the recursive expression $G_0^{(n,m)}(x_1 \dots x_n; y_1 \dots y_m) \equiv \sum_{i=1}^m (-)^{n+m-i-1} G_0(x_1, y_i) \times G_0^{(n-1, m-1)}(x_2 \dots x_n; y_1 \dots y_{i-1}, y_{i+1} \dots y_m)$ solves the appropriate equation of motion. Iterate this result to prove Wick's theorem for this theory.
- (e) Optional. Generalize the above to show that Wick's theorem remains valid at non-zero temperature. What is the finite temperature two-point correlation function $G_0(x, y)$ in this theory?
3. Gamma Matrix Identities. For any four-vector a^μ , let \not{a} be an abbreviation for $\gamma_\mu a^\mu$. Define $\gamma_5 \equiv \gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$. Using only the anti-commutation relation satisfied by the gamma matrices:
 - Prove that γ_5 anticommutes with all the γ_μ , and squares to the identity matrix.
 - Prove that the trace of any product of an odd number of gamma matrices vanishes.
 - Evaluate $\text{tr}(\not{a} \not{b})$ and $\text{tr}(\not{a} \not{b} \not{c} \not{d})$.
 - How does the number of terms in a trace of k gamma matrices grow with increasing k ?
 - Evaluate (i) $\gamma^\mu \gamma_\mu$, (ii) $\gamma^\mu \not{a} \gamma_\mu$, (iii) $\gamma^\mu \not{a} \not{b} \gamma_\mu$, and (iv) $\gamma^\mu \not{a} \not{b} \not{c} \gamma_\mu$.
4. Majorana representation. Find a gamma matrix representation (in four dimensions) for which $\psi(x)$ is a real field, $\psi(x)^\dagger = \psi(x)$.