Physics 571 Assignment #1 Solutions Januady 22, 2025

1. Dirac Fermions.
Let S(z)ag = (017 (¢a(2)¥5(0)) [0) = 0(2°)(0ftha(2)15(0)|0) — 8(=2){0f15(0)1ha(x)|0). Apply
to S(x) the operator i(y*0,, + m). Since i(y*0d, +m)(x) = 0, the only reason the result is non-

zero is due to the time-ordering, which introduces step functions in time. Differentiating these
produces delta functions in time, so that

{(V4 0+ m)ag S(x) gy = (11")ap [6(2° ){01(2)e(0)]0) + 3(2") {0l (0)5(x)|0)]
= (17")ap (O1{¥5(2),v+(0)}|0) 6(a”)
= (17")ap (i7") 5y 8°(2) 6(2°)
:5a754($)

(Because of the temporal delta function, the anti-commutator of ¥(x) and (0) is an equal-time
anti-commutator.) Hence, the propagator S(z) is a Green’s function for i(y#9,, + m).

Inserting a four-dimensional Fourier representation S(z) = [ d*p/(2m)* e?* S(p) into the Green’s
function equation shows that i(ip+m) S(p) = 1 or S(p ) = —i(ip+m)~L. This is a matrix inverse,
but it is easy to do if one notices that (ip + m)(—ip +m) = ()% + m2 = p? + m?. Therefore
zg(p) = (—ip+ m)/(p2 + mz). There is just one problem: the denominator has poles on the
real p¥ axis at p° = ++/p? + m2. These poles are on the integration contour for the temporal
Fourier transform, and hence the Fourier integral S(x) = [ d*p/(2m)* e S(p) is ill-defined. This
always happens for Green’s functions of wave operators Specifying a prescription for integrating
around the poles in the Fourier representation is equivalent to selecting the Green’s function which
satisfies appropriate boundary conditions at infinity. In this case, the appropriate prescription is
to replace m? — m? — ie in the denominator (just as for a free scalar field). One may justify
this by inserting mode expansions and explicitly computing S(z) in the free Dirac theory (and
then Fourier transforming the result). Alternatively, one can use the fact that in any quantum
theory (with a ground state), time-ordered correlation functions must have analytic continuations
to Euclidean space, which implies that S (p) must be analytic in the first and third quadrants of
the complex p° plane.

2. Wick’s theorem for fermions.

(a) We have Go(z,y) = O(2°—y°) (0|y(z)y (y)]O) —O(y"—2°) (0|9 (y)2(x)|0). Differentiate with

respect to time, recalhng that opp(z) = i[H, p(x)):
(;;OG (2, y) = i0(2"—y°) (O|[H, ()9 ()[0) + (2" —y°) (0w (2) ()0)
—i0(y° =) (014 (y)[H, 9 ()]]0) + 8(y°~2°) (01 ()¢ (x)]0)
=017 ([H, ()] ¢ (9))[0) + 6" ~y°) (O[{(), ¥} ()}0) -

For the free Hamiltonian H = f d3x4pT(2) hap(x) (with h some differential operator in z), the
commutator is simple, [H,(z)] = — [ d3z {¢T(2),9(x)} hep(2) = —he(x). Thus

.0 .
55 Gole,y) = h (07 (0(@)v! (1)) [0) +i6(a*~y°) *(z—y)
or (idy — h) Go(z,y) = i 6*(z—y) (with h understood as acting on = dependence).

(b) The linear operator K = idy — h is invertible if (and only if) there are no zero mode solutions
f(z) satisfying K f(x) = 0 within the appropriate space of functions on which K acts. One
way to check this is to diagonalize K and see if any eigenvalues vanish. In the case at hand,



this is easy since the operator i0y — h is time-translation invariant and the sum of two mutually
commuting terms. Hence its eigenvectors are products of plane waves in time, e =, multiplied
by eigenfunctions of h,

0

(100 — h) e xn(2) = (w — €n) €% xn(2).

Here {xn(z)} denote the orthonormal eigenfunctions of h with corresponding eigenvalues {¢, }.
Because the Hamiltonian is hermitian, the single particle energies €, must be real.

The eigenvalue w—e,, will vanish if w can equal €,,. However, we are considering the invertibility
of this operator when the time z° is analytically continued through a phase e™* (with 0 <
§ < m). This means that the space of functions on which the time derivative acts should be
functions which are well behaved on the line t = e~ s (for s real). The plane wave e~**
blows up exponentially as |[t| — oo in one direction or the other along this line unless the
frequency w lies on the straight line C' which is rotated counterclockwise from the real axis by
the angle #. Hence, the only well-behaved eigenfunctions are those for which the frequency w
lies on the line C. So (as long as the single particle Hamiltonian h has no zero eigenvalues),
the frequency w cannot equal a single-particle energy e€,, and so iJy — h is invertible. The
explicit form of the inverse is easily constructed by projecting into the basis of eigenfunctions:

Go(z,y) =i (z|(ido — h) " |y)
—iwa? 1 W
BT i

=" [6(2°—4%) O(en) — O(1°—=2°) O(—€)] e ") i (@) (y) -

Here, the frequency integral is computed as usual by closing the contour downward for 20 > 3/,
and upward otherwise, picking up the residue of the simple pole at w = ¢, if it lies within the
resulting closed contour. This is precisely the same expression which results from inserting
the mode expansion of the fermion field,

1&(1’) = Z Cn Xn(:g) et

n

into the definition of the propagator, and evaluating the matrix elements using the fact that
the ground state |0) satisfies ¢,|0) = 0 if €, > 0, and éL!O> =0ife, <O0.

To find the equation of motion of the higher correlation functions,
G @1 wni - ym) = 01T (Y1) 0(@a)9! ) -+ v (1) ) 0},

one may begin by differentiating with respect to z{ (or any other time variable), just as
in (a). A slightly more clever approach is to apply the combination i (9/0z9) — h (where
h is regarded as acting on functions of z1) since [i (9/0x7) — h] ¢(z1) = 0 is precisely the
Heisenberg equation of motion for ¢ (x). Thus if the time-ordering symbol were not present,

this operator applied to G(()n’m) would simply give zero. But, because of the step functions
0

introduced by the time-ordering symbol, as the time 7 varies there is a discontinuity every

time 29 crosses one of the other times. Differentiating these step functions will give a delta



function of a time difference, just as in (a). Consequently,

<Zg—h> G(()’ )($1"-$n;yl"'ym)
1

(017 ({00), 1)} + 1(w2) () ) b)) - (o) ) [0
_ ZZ (_)nflerfj 54(:1:1_:%_) Gén_l’m_l)(«TQ T Y % .. -yl) .

=

—_

The sign of each term depends on the number of minus signs introduced by the time-ordering
symbol interchanging fermionic operators; (—)"~'*"™~J is number of interchanges needed to
bring the operator 1 (y;) next to ¢ (z1) starting from its original position in the product.
Note that no delta function terms result when the time z crosses the time of one of the other

{t(xr)} since that discontinuity is proportional to {1(x1), ¥ (xk)} = 0.

This result is a linear equation for ng’m) with the same operator on the left-hand side discussed

above. If all times are analytically continued from the real axis to the rotated line with phase
—0, then the discussion in (b) may be repeated verbatim. Since the operator i0; — h is
invertible (when acting on functions which are well-behaved on the rotated line), the equation
must have a unique solution in this function space.

The equation above is “solved” by applying the inverse of (i0; — h) to both sides,

n,m -m n—14+m—j (9 o
Gl )($1‘-'xn;y1-~-ym)=ZZ(—) v ]<x1|<lax°_h> i)

J=1 !

—1,m—1
x Gy )(xz---:cn;ym-'-;/j--'yl)
m
e —1,m—1
= ()T Golwn, ) GO e w1
j=1
The same relation may be used to reexpress the factors of G(()n_l’m_l) on the right hand side,

yielding a new identity for G(()n’m) as a sum of m(m—1) terms, each of which is a product of

two propagators times G[()n_Q’m_Q). Or, iterating once more, m(m—1)(m—2) terms involving

three propagators times G(()n_3’m_3), etc. If n # m, the process terminates when there are
either no more 9’s or ¥’s in the resulting correlation function; in other words every term in
the sum has a factor of Gé"fm’o) (or Géo’mfn)) which vanishes. If n = m, the iteration leads
to a sum of n! terms, each of which involves a product of n propagators (and a particular

pairing of the {x;} and {y;} coordinates),

Gén’m) = Onm Z or Go(21,Yr,) Go(22, Ymy) - - - Go(Tn,s Yr, ) -

s

This is Wick’s theorem for any theory of fermions. The sum extends over all n! permutations
of the {y;} coordinates. To check that the resulting sign equals the signature o, of the per-
mutation (—1 for odd permutations and +1 for even ones), note that (when n = m) the factor
of (—)tm+i=1 — ()i~ in the first result is the same as the number of transpositions which
are needed to cyclically permute y1y2---y; to y;y1y2---yj—1 (leaving the other coordinates
unchanged). So, at every stage in the iteration, the overall sign is just the signature of the
permutation which has rearranged the {y;}.



(e) At non-zero temperature, one is interested not in ground state expectation values, but rather
thermal correlation functions,

G(()"’m)(xl XT3 YL e Ym) = T [P T (w(ffl) s (@)Y (Ym) - 1,1)*(3/1))} )

where p = e PH /Z is the density matrix describing the canonical equilibrium thermal distri-
bution at temperature k7" = 1/5. “Turning on” a non-zero temperature does not change in
any way the canonical commutation relations, the Hamiltonian, the quantum time-evolution,
or the time-ordered product of operators 7 (¢(x1) - ¥(zn) (ym) 9T (y1)). Since the

only ingredients used in deriving the equation of motion for Gén’m) were the definition of
time-ordering, the Heisenberg equation of motion for ¢(z), and the canonical commutation
relations, the finite temperature correlation functions satisfy exactly the same equations of
motion as at zero temperature. What does change is the boundary conditions. If one ana-
lytically continues all times to the imaginary axis, a short exercise shows that time-ordered
thermal correlation functions satisfy

G(xo_yov Zz, ZNJ) = iG(xO_yO_iﬁa z, g) )

if 29— lies within the strip [0,43]. This means that thermal correlation functions are (an-
alytic continuations of) functions which are periodic (for bosonic operators), or antiperiodic
(for fermionic operators) in imaginary time with period 8. This is known as Euclidean period-
icity (or KMS boundary conditions, after Kubo, Martin and Schwinger). The same argument
used above shows that the linear operator id; — h is invertible when acting on functions obey-
ing the thermal boundary condition, since the periodicity condition forces the frequency w of
allowed eigenfunctions to have quantized imaginary values, wy = (2k+1)imw /3 for fermions or
wy = 2kin /B for bosons. Every step in the proof of Wick’s theorem works the same as at zero
temperature, only the explicit form of the propagator changes and becomes

Goe,y) =i {el(idn — 1) Moy =873 3 e () ——— xh ()

k n

T Wi — €p -

(One can perform the sum over the discrete frequencies explicitly.) The fact that Wick’s
theorem holds without change at non-zero temperature means that the entire structure of
diagrammatic perturbation theory has an immediate generalization to finite temperature cal-
culations. See books like Rickayzen for lots of interesting applications of finite temperature
perturbation theory.

3. Gamma Matrix Identities.

(a) For any p, v* anticommutes with three out of the four matrices in 75 = i7%y'y243, and hence

anticommutes with 5. And (35)> = —(7"7'7?7%)(7%7'9%*9%) = +(3%7'4?)(1*1?)(v%)? =

HOO)EEREY? = (IR0 =~ = 1.

(b) Insert 1 = (v5)? into the front of the trace, move one 5 past all the other gamma matrices
to the end of the trace, using its anticommutation relation, and then use trace cyclicity to
bring it back to the front: tr v, - Yy = tr(v5)2 7 Y = (1P Y5701 - Y Vs =
(=%t (95) %901 Y = (=1)Ftr 4, - - If k is odd, then the trace equals minus itself
and hence equals zero.

(c) tr @iff = auby tr Y*v" = Taub, tr ({v*,7"}) = auby, g" tr 1 = 4a-b. For tr ¢li¢d, first move the
¢ from the beginning to the end, using ¢ = —p¢ + 2a - b, etc., and then use trace cyclicity to



bring the final ¢ back to the front:

tr @hgd = 2(a - b)tr ¢ — tr Prdd

2(a-b)tr ¢d —2(a-c)tr Pd + 2(a - d) tr §¢ — tr Pe¢dd
8(a-b)(c-d)—8(a-c)(b-d)+8(a-d)(b-c)—tr dhi¢d.

Hence tr gfi¢d = 4[(a-b)(c-d) — (a-c)(b-d) + (a-d)(b- ).

(d) Let Nj denote the number of terms in a trace of 2k gamma matrices. The same strat-
egy used in part (e) shows that N = (2k—1) Ny_o. Since N; = 1, the result is Ny =
(2k—1)(2k—3) --- (3)(1) = (2k—1)!!, which grows like (k/e)*/? for k large.

(e) (1) Y vu = guw Yy = %gwj "™, W}t = g g" = 4 (times a 4 x 4 unit matrix).

(i) Ydyu = av ¥y = ay (2g"" — ") = 20", — da,y” = =24

(

(

i) Yy, = (20" — gy")py = 2Bd — 420" — Py")y = 2P — 24P + 4gf = 2{p, ¢} = 4a - b.
iVL;ﬂW'M = (2aF =gy )b, = 2Pdh— (20" =Py ) dyy = 2¢h— 24— 24B¢ = 2P¢d—4d(b-c) =
—2¢lig.

. Majorana representation.  If ¢/(x) = S (z) for some unitary matrix S, then (¢/(z)")T =
S*(t(x)T = S*Cap(x) = S*C S~/(x). So the problem reduces to finding a unitary matrix
S such that S*C S~ = 1 or C = STS. In our standard representation, C' = [ 0 _i”] It

109 0
has two eigenvalues of +1, with corresponding eigenvectors (0,1,1,0)7 and (1,0,0,—1)T (up to
arbitrary phases), and two eigenvalues of —1 with eigenvectors (1,0,0,1)” and (0,1, —1,0)” (up to
phases). Normalize these eigenvectors and stack them together to form a unitary matrix U which
diagonalizes C, so that C = UAUT with \ diagonal. The matrix S = U' will be a solution to
C = ST S if we can select phases so that U\ = (UT)T = U*. To satisfy this, choose the eigenvectors

with eigenvalue —1 to be pure imaginary, and while the eigenvectors with eigenvalue +1 are real.

One explicit solution (which can be written compactly) is S = L [

V2
induces a similarity transformation on the y-matrices, 7, = 5v,S! with the transformed matrices
Y all being real:

- 01 . 0 o2 . (-10 - 0 -1
=\ _19)" "= —igy 0 ) T2 = 01/ B=\_1 o)

—1i o9
o1 03

]. This change of basis



