Physics 571 Assignment #2 Solutions February 5, 2025

1. Yukawa theory (A).

(a)

If  — —¢ and ¢ — A1) then, recalling that 1) = wT(ify ), the conjugate fermion transforms as
¥ — (i) AT (i7°). For the Yukawa coupling term ¢ ¢ to be invariant, this transformation
of 1) must equal 1/JA 1 implying that A=! = —(i7° )AT(W ). This will be satisfied if A
anticommutes with 4 and is unitary (so that AT = A~1). For the fermion kinetic term 1@y
to also be invariant, A must anticommute with all the gamma matrices. Choosing A = 5
does the job. (My 75 is Hermitian and squares to one.) This is called a chiral transformation
because, if ¢ is decomposed into right and left handed pieces, this transformation transforms
the two pieces differently.

The UV divergent one-loop diagrams are:
i. The scalar self-energy >4(k) = ——O——— =—g f o BB+ K)] /) [K*(p + k).
ii. The fermion self-energy ¥ (p) = =g f d4k }6 + ) / [(K* +m?)(p+ k)?].
. The fermion vertex correction I" = >—-- ~g [ (d4l4 1/ (l2 +m?)].
iv. The quartic scalar diagram G4 = \:OZ‘ + perms. ~ —6g* f 4 e (117 ) (1%)*
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-

The scalar tadpole diagram I'j = -«3 and the cubic scalar diagram I's = -« _ would
also, by power counting, appear to be divergent. But these diagrams involve a trace of an
odd number of gamma-matrices, and hence vanish identically. In these diagrams, dashed lines
denote the free scalar propagator while directed solid lines denote a free fermion propagator
which (in momentum space) is just —ip/p? since there is no fermion bare mass. (The above
expressions for I' and G® omit the external momenta which add to the loop momentum
on some propagators. Only the above leading high (loop) momentum forms will be needed
below.)

Regarding the overall coefficients above, note that each vertex (in Euclidean space) carries a
factor of —g, each fermion propagator brings a —i, and every closed fermion loop receives an
additional minus sign. Beyond that, self-energies are defined as minus the 1PI diagram, so
that a positive self-energy correction gives a positive correction to the mass (or mass-squared)
when resummed into the propagator denominator. The factor of 6 in G*) accounts for the six
permutations of external lines each of which represent distinct contributing diagrams. Because
the fermion lines are directed, all symmetry factors are unity.

The scalar self-energy has dimension two and is quadratically divergent (or UV sensitive) so
with a momentum cutoff A it can have the form

Ye(k) = c1 g* A2+ cag®m® InA/p+ 3 ¢* k* In A/p + finite,

with each ¢; coefficient equal to some pure number. The k-independent ¢; and ¢y terms can
be absorbed by suitably adjusting the scalar bare mass m?. The quadratic (in k) c3 term can
be absorbed by scalar field wavefunction renormalization.

The fermion self-energy has dimension one and appears, by power counting, to be linearly
divergent implying that it could have the form

Yy(p) =a1g* A+ azg®m InA/p+azg®p InA/p + finite,

with each a; equal to a pure number. However, the p-independent a; and as terms, which
multiply a 4 x 4 identity matrix (with Dirac indices) must actually vanish. One way to
understand this is to note that if these terms did not vanish, then their UV sensitivity could
only be absorbed by adding, and suitably adjusting, a fermion bare mass. But adding such a



fermion mass would violate the chiral symmetry of the theory. Alternatively, at a hands-on
level, the integrand of the above expression for the fermion self-energy is a linear combination
of gamma matrices, so the result of the integral must also be some linear combination of {y#};
it cannot produce any term proportional to the identity matrix. As p is only spacetime vector
which the result can depend on, the answer must be g% times some function of p?. The net
result is that the fermion self-energy only has only logarithmic UV sensitivity proportional to
p, which may be absorbed by fermion wavefunction renormalization.

The fermion vertex correction I' is dimensionless and, by power counting logarithmically di-
vergent, so it must have the form

D(p,p'; k) = bg> InA/p + finite,

with b some pure number. This UV sensitivity may be absorbed by suitable adjusting the bare
Yukawa coupling g. The quartic scalar diagram I'y is dimensionless and, by power counting,
logarithmically divergent, so it must have the form

GY({k;}) = dg* In A/p + finite

with d some pure number. This UV sensitivity cannot be absorbed by adjusting any of the
terms in the initial action, rather one must add an additional interaction to the theory, namely
a quartic scalar A¢? interaction. Doing so is necessary so that the UV sensitivity in G4 may
be absorbed by suitably adjusting the bare quartic coupling A\. However, once this is done
there will be additional UV divergent one-loop diagrams, namely the usual scalar ¢* theory
self-energy and four point 1PI diagrams, with the latter having the form

GW ({k;} = d' A% InA/p + finite ,

) ‘(]54 contribution
with d’ some pure number. These additional UV sensitivities may be absorbed by performing
the usual scalar theory renormalizations, namely suitable adjustments of the scalar bare mass
m?, quartic coupling A, and scalar field wavefunction renormalization. The resulting theory
is perturbatively renormalizable.

The renormalization group (RG) equations for the dimensionless couplings g and A arise from
the above logarithmic UV sensitivities, since these automatically imply logarithmic depen-
dence on the renormalization point p. The vertex correction I' adds to the tree-level vertex of
—g in the 11p¢ three-point function, so the required adjustement of the UV-cutoff dependent
bare Yukawa coupling is g(A) = gren(p) + bgo, In A/mu + ---, where --- represents higher
order corrections of order ¢° or g3\. Demanding that

0= gk g(A) = pgh [gren (1) + b gron I A/ + -]

gives u% Gren(t) = bgl,,, up to higher order corrections. In the scalar four-point function,
the tree-level quartic interaction vertex of —A(u) receives corrections from both fermion and
scalar one-loop contributions, so the required adjustment of the UV-cutoff dependent bare
quartic coupling is A(A) = Aren(12) + (dg* + d' X?) InA/p + - - -. Demanding that

0= N% )‘(A) = M% [)‘ren(:u) + (dg;len +d A?en) In A/:LL + - ]

gives u% A =dg* +d \? up to higher order corrections.
To evaluate the various coefficients, note that the high-momentum forms of the various loop
integarls above all reduce to multiples the same basic form:

r=1g1, W —_2agtr, ¢W —3x71,

fermi scalar 2



with I = f‘i\ (2‘%4 =% = (872)"'In A/p. The factor of 1 in the vertex correction I' comes from
(4)

4D angular averaging of [#1”, the additional factor of 4 in G . is from the Dirac trace, and

the factor of % in Ggglar is from the three distinct 1PI scalar four-point diagrams (differing

just by permutations of external lines) times a symmetry factor of % for each diagram. Putting
things together, we have the coupled pair of one-loop RG equations:

d g d 3

5 Yren = - >\ren = >\2 -1 . .

A continuous symmetry phase rotating a complex scalar field, ¢ — €!® ¢, is the same as a
Regb) — (Cf)sa B sma> (Regb). To construct a Yukawa theory
Im¢ sina  cosa /) \Im¢

with a continuous chiral symmetry, consider the pair of Lorentz invariant fermion bilinears
Y and iPy510, and define a transform which will cause these two bilinears to similarily rotate
into each other, namely ¢» — €*751). Since 75 squares to one, this is the same as 1) —

(cos 8 + isinSv5) 1. Under this transformation < quﬁ ) — < cos 23 sin26> < vy ),

two-dimensional rotation: (

W5y —sin2f8 cos26) \iys
while 1)y*1) is unchanged. So an interaction term involving the dot product ( v ) . (Re¢>
Wysy) \Ime

will be invariant under the continuous chiral transformation taking ¢ — €% ¢ and ¢ —
e? ¢. The complete (renormalizable) complex Yukawa theory Lagrange density with such a
symmetry is

L= 106> + m?|¢]> + LN ¢|* + (P + g (Reg + i75 Imep) ) + (const.).

2. Yukawa theory (B).

(a)

The theory will contain a stable massless fermion. Because of the chiral symmetry, interactions
cannot generate any mass for this fermionH And likewise there is a stable antifermion. These
states must be stable as fermion number is conserved and these are the lightest states with
fermion numbers +1, so there is nothing that these states could possibly decay into. In the
free theory with no Yukawa interaction there would also be a stable scalar particle of mass m.
But in the presence of the Yukawa interaction, this scalar can decay into a fermion-antifermion
pair. So, for weak coupling, g < 1, there will be an unstable scalar resonance with mass about
m and width of order g*m.

Since the fermion is massless, single fermion states will contribute to the fermion spectral
density at p? = 0 (or in other words, at p° = £|p|). Because these are massless particles, odd-
numbered multi-particle states can also begin contributing to the spectral density starting
right at p? = 0, specifically three particle fff states consisting of two fermions plus one
antifermion, five particle states fffff states, etc. Since there is no separation between
single particle and multiparticle contributions, the actual behavior of the spectral density
in the neighborhood of p? = 0 is not just a single particle delta function, it is actually the
discontinuity of some form of branch cut. The resulting fermion spectral density will be
non-zero for all p?> > 0, but should show a smoothed approximate threshold at p?> ~ m?
corresponding to an enhanced contribution of fff states which are well-described as a ¢
resonance plus a separate massless fermion, with further approximate (smoothed) thresholds
at p? =~ 4m?, 9m?, etc., corresponding to enhanced contributions from two (or three, etc.) ¢
resonances plus a fermion.

1Unless this symmetry becomes spontaneously broken due to the development of a non-zero vacuum expectation
value for the scalar ¢. But the problem said to consider m? > 0 for the scalar, so this logical possibility is ignored.



2 Because the fermions which

The scalar spectral density will show a resonance at p? ~ m
the resonance decays into are massless, this spectral density will be non-zero for all p? > 0
reflecting the contribution of two-particle fermion-antifermion states.

The following are schematic sketches of these spectral densities]

Pyt (12) Pt (1)

0 Tr;Q 47;12 0 }2
(c) Physical processes in this theory are:
i. Two fermion elastic scattering, ff — ff, via ¢ exchange,
ii. Two antifermion elastic scattering, ff — ff, via ¢ exchange,
iii. Fermion-antifermion elastic scattering, involving either ¢ exchange or virtual production
of a ¢ resonance,
iv. Inelastic scattering involving pair production of one or more additional fermion-antifermion

pairs. For example, ff — ffff.

The only 1 — 2 “particle” decay process is the decay of the ¢ resonance, which is not a stable
particle — but can be produced in fermion-antifermion scattering with the appropriate center-
of-mass energy. No two to three particle scattering processes are possible (where “particle”
means the genuinely stable fermion or antifermion), although 2 — 4 scattering processes like
ff — ffff will show a resonant enhancement near E'! ~ m which may be interpreted as
production of the the ¢ resonance via ff — ff¢ followed by decay of the resonance into a
fermion-antifermion pair.

2Spectral densities may be defined (in any translation invariant theory) as a Fourier transform of the commutator,
x(q) = [d*ye " r@==) (0] [A(y), Af(2)]|0). But in a Lorentz invariant theory, a spectral density can only depend on
Lorentz invariants, namely ¢* and sgn(q®), so that it must have the form x(q) = ©(¢°) p+(—¢>) — O(—¢°) p—(—4?).
If the operator A is either CPT even or CPT odd, one may show that this implies that p; = p_, so that x(¢) =

sgn(q®) p(—¢*), with i G(p) = [° % p(1?)/(p® + u? — ie) the resulting relation between a time-ordered correlator

and its Lorentz invariant spectral density.



