1. Consider an SU(N) gauge theory containing N different scalar fields, each transforming in the fundamental representation. Assemble these scalar fields into a single $N \times N$ matrix $\Phi = ||\Phi_{ai}||$, where a is a gauge group index and i is a flavor index, each running from 1 to N. Let

$$-\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr} F_{\mu\nu}^2 + \operatorname{tr} \left[(D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] + m^2 \operatorname{tr} \Phi^{\dagger} \Phi + \frac{1}{2N} \lambda_1 \left(\operatorname{tr} \Phi^{\dagger} \Phi \right)^2 + \frac{1}{2} \lambda_2 \operatorname{tr} \left[(\Phi^{\dagger} \Phi)^2 \right].$$

- (a) What are the symmetries (local and global) of this theory?
- (b) Assuming that $m^2 < 0$ while λ_1 and λ_2 are positive, show that the (Euclidean) action has a global minima, or vacuum configurations, where $\Phi(x) = v u(x) e^{i\chi(x)}$ and the gauge field has the pure-gauge form $A_{\mu}(x) = u(x)\partial_{\mu}u(x)^{\dagger}$, for some magnitude v > 0and arbitrary $u(x) \in SU(N)$ and phase $\chi(x)$. What is v?
- (c) Under what subgroup of the full symmetry group is some given vacuum field configuration left invariant?
- (d) To expand the action about any of these vacuum configurations, let $\Phi(x) = u(x) e^{i\chi(x)} h(x)$ and $A_{\mu}(x) = u(x)(\partial_{\mu} + a_{\mu}(x))u(x)^{\dagger}$, where $u(x) \in SU(N)$, the phase χ is (of course) real, and h(x) is a positive semi-definite Hermitian matrix. Explain why this decomposition is unique provided $\Phi(x)$ is invertible. (So, in particular, this decomposition is well behaved in the neighborhood of any vacuum configuration.)
- (e) Let $h(x) = v \mathbf{1}_N + \delta h(x)$, where $\mathbf{1}_N$ denotes the $N \times N$ identity matrix. Rewrite each term of the action in terms of the fields a_{μ} , χ , u and δh of this decomposition. Expand the resulting action in powers of δh , simplifying your expressions as much as possible.
- (f) What is the tree-level spectrum of this theory? I.e., what are the masses and spins of physical particles? How many massless Goldstone bosons are present?
- (g) What are the interaction terms involving Goldstone bosons? What physical scattering processes will these induce? How will the cross-section for each of these processes depend on the energy of the Goldstone boson(s)?
- (h) Now suppose that $m^2 > 0$. In this regime, what is the tree-level spectrum of the theory? How many massless Goldstone bosons are present? Must there be a phase transition (i.e., some point of non-analyticity in physical quantities) as m^2 changes from large negative to large positive values?
- (i) Finally, suppose the additional term $\delta \mathcal{L} = \epsilon (\det \Phi + \det \Phi^{\dagger})$ is added to the theory, with ϵ small and negative. How does this change the symmetries of the theory? How will this perturbation affect your answers to parts (f) and (h)?
- 2. Consider an SU(N) gauge theory with a single adjoint representation Hermitian scalar field Φ , and Lagrange density

$$-\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr} F_{\mu\nu}^2 + \frac{1}{2} \operatorname{tr} (D_\mu \Phi)^2 + \frac{1}{2} m^2 \operatorname{tr} \Phi^2 + \frac{1}{4N} \lambda_1 (\operatorname{tr} \Phi^2)^2 + \frac{1}{4} \lambda_2 \operatorname{tr} \Phi^4$$

(a) What are the symmetries (local and global) of this theory?

- (b) Assuming that $m^2 < 0$ while λ_1 and λ_2 are positive, what field configurations minimize the action? What subgroup of the full symmetry group leaves a vacuum field configuration invariant?
- (c) Expand the action about any of these vacuum configurations. Simplify your results.
- (d) What is the tree-level spectrum of the theory? What are the low-energy degrees of freedom? How many massless Goldstone bosons are present?
- (e) What changes if $m^2 > 0$? Must there be a phase transition as m^2 changes from large negative to large positive values?