Observational Study Designs

Denise Boudreau, PhD Center for Health Studies Group Health Cooperative

Today Review cohort studies Case-control studies Design Identifying cases and controls Measuring exposure Risk estimate Strengths and limitations Biases Examples Take home points

Review risk at risk Closed population

Measures of disease occurrence

- Prevalence = number of disease/population at
- Cumulative incidence = new cases/population
- Incidence rate = new cases/person time of observation among at risk

- Loss to follow up Non-response if collecting primary data Selection bias

Bias

- Selection bias
- Surveillance bias
- Information bias and misclassification
- Confounding

Case-control studies

Case-Control Studies

- Identify individuals with disease/outcome of interest and a comparable control group
- Look back in time to determine proportion of cases and controls that were exposed and non-exposed
- Examples of exposure: medication use, environmental factor, condition, and procedures
- Examples of cases: cancer cases, adverse event, diabetic patients, patients undergoing CABG

Selection of cases and controls

- Define source population
 - General population
 - Ex: social security recipients, 3 western WA counties
 - Hospital, clinic, business
- Eligibility criteria often specific to study question and ensures "at risk"
 - Inclusion criteria
 - Ex: women 65-79 years residing in 1 of 3 WA counties
 - Exclusion criteria
 - Prior diagnosis of breast cancer

Identifying Cases

- Ideally, random sample of everyone who develops disease or all diseased in sample population
 - Example: all breast cancer cases diagnosed in 3 WA county during 1997-1999
- Type of cases
- Incident (newly diagnosed) generally preferred
- Prevalent
- Sources
- Registries
- Hospital records
- Health care utilization data
- Work place

Selection of Controls

- Should be selected from same population that gives rise to cases
- Similar to cases in all respects other than having disease
 Patient characteristics, co-morbidities, etc.
 - Follow-up time
 - Ascertainment of exposure
- Selected independent of exposure
- Ex. sources
 - Population preferred
 - School rosters, insurance lists, random digit dialing
 - Hospital or clinic based
 - Friend or sibling

Matching controls to cases

- To ensure that cases and controls are comparable with respect to major risk factors for disease that not interested in evaluating
 - May also need to match on follow-up time
- Individual matching
 - For each case, a control is selected who is similar in terms of matching characteristic (e.g., age)
- Frequency matching
- Proportion of controls with matching characteristic is identical to proportion of cases with the same characteristic
- Match at ratio of 1:1 4:1
- Increase statistical power
- At times, may want to use more than 1 type of control group

- Self-report
 Mailed questionnaire
 - Phone or in-person interview
- Medical records
- Automated health plan data
- Retail pharmacy records
- Medication inventory

Case-Control Studies

- Cannot provide direct estimate of incidence or prevalence of disease
- If incident cases are used, study provides information about relative incidence of disease in exposed vs. nonexposed
- If prevalence cases are used, study provides information about relative prevalence of disease in exposed vs. nonexposed

Odds Ratio

- Ratio of exposure among cases to exposure among controls
- Answers: What are the odds that the case was exposed?
- Measure of the association between exposure and disease
- Varies from 0 to infinity
- OR=1: no association
- OR>1: exposure is a risk factor for disease; increases risk for disease
- OR<1: exposure decreases the risk for disease
- Example:
- OR=3.0 can be interpreted as 3 fold increase in risk
- OR=0.5 can be interpreted as 50% decrease in risk

When does odds ratio approximate relative risk?

- The disease is rare
- Exposure frequency among cases studied is representative of that among all cases in population
- Exposure frequency among controls studied is representative of that among all non-cases in population

Case-Control Studies

Pros:

- Excellent for rare diseases
- Look at the effect of multiple exposures in relation to disease
- Usually inexpensive and fast
- Cons:
 - Can't directly estimate incidence or prevalence
 - Bias from inappropriate controls
 - Self-reported exposure data subject to recall bias
 - Only look at one disease

Example of case-control study Association between statin use and breast cancer risk

- Cases 975 women 65-79 years diagnosed with primary invasive breast cancer (SEER registry) in 1997- 1999 whose names appeared on list of social security recipients (CMS) & resided in 1 of 3 western WA counties
- Controls 1007 women whose names appeared on CMS list where matched to cases on age, diagnosis year, and county Data collected by in-person interview
- Logistic regression used to evaluate risk of breast cancer in statin users
- Adjusted for matching variables
- Adjusted for other confounders (ex: body mass index, HT use)
- Long term statin users (>5 years) had reduced risk of breast cancer (OR=0.7) compared to non-users

*Cancer. 2004:100:2308-16

Association between statin use and breast cancer (cont.)

- Limitations
 - Recall bias
 - Validated self-reported medication use with health plan data
 - Used pictures of medications & life calendar to improve recall
 - Missing data
 - Limited follow-up period
 - Residual confounding?
 - Generalizable to postmenopausal women in WA
- Strengths
 - Histologically confirmed breast cancer cases
 - High response rate
 - Data on many potential confounders

Example of case-control study

Antibiotic use and breast cancer risk

- Cases: 2266 primary invasive cases between 1993-2001 among GH enrollees
- Controls: matched 3:1 on age and duration of enrollment for a total of 7,953
- Data from automated health plan records
- Cumulative days of antibiotic use associated with increased risk of breast cancer
 - Clear dose response

*JAMA 2004;291:827-35.

Antibiotic use and breast cancer risk (cont.)

Limitations

- Confounding by indication no data on indication for use
- Residual confounding and missing data
- Conducted within one health plan in WA state

Strengths

- Stable population with complete data on all health care utilization (diagnoses, pharmacy, procedures, etc.)
- Data on risk factors for breast cancer from breast cancer surveillance program
- Complete capture of incident cases

Biases in case-control studies

- Selection bias distort true association due to selection of subjects who either are not generalizable and/or who have unequal relationship between exposure and outcome
 - Ex: Cases that die soon after diagnosis are not represented and therefore study is only generalizable to survivors
 - Ex: Response rate varies by exposure
 - Ex. Hospital controls more likely to be sicker and more or less likely to be exposed to medications
 - Ex. Controls with disease rule out more or less likely to be exposed
 - OC use and thromboembolism

Biases in case-control studies (cont.)

Information

- Measurement error
 - Ex: Self reported weight underestimates true weight by average of 0.5kg
- Differential misclassification
 - Ex: Cases recall exposure better than controls
 - Ex: Interviewers probe cases more than controls
- Non-differential misclassification

Confounding – distortion of association due to imbalance between exposed and non-exposed with regard to risk factor(s) for disease

• Ex: Confounding by indication for a drug

Things to consider when reading case controls studies

- Are cases and controls similar with exception of disease?
 - Subject characteristics, data quality, follow-up
- Appropriate data collection or data source
- Appropriate time frame
- What are the potential biases?
- Potential confounders considered
- Generalizability of results
- Does study make sense and is enough information provided?

Inferring causal relations in observational studies

- Association is strong (risk estimate)
- Association makes biological sense
 - Plausible explanation
 No plausible paper equival
 - No plausible non-causal explanation
- Suspected cause precedes the presence of disease
- Magnitude of association is strongest when predicted to be so
 - Dose response

Measures of risk	Depends on:	Addresses:
Relative risk or risk ratio Odds ratio	Influence of exposure (E) on relative incidence of disease (D) in E persons	Does E cause D?
Hazards ratio		
Risk difference or attributable risk (AR) = Incidence in E minus incidence in non-E	Influence of exposure (E) on absolute disease (D) in exposed persons	How much of D is E responsible for? Should anything be done to modify E?
Population attributable risk (PAR) = Incidence in population minus incidence in non-E	Risk ratio Frequency of exposure Frequency of disease	What rate of D in population is caused by E? Should resources be allocated to control E relative to other E causing greater health problems?
Statistical significance or P value	Risk ratio Sample size Frequency of disease or	Could association between E & D have occurred by chance?
	exposure, depending on design	

Attributable risk is also important

- RR is large but overall incidence of disease is low
 - □ Ex: RR=5.0; I_e=100/100,000 py; I_o= 20/100,000 py
 - AR = 80/100,000 py
- RR is modest but overall incidence of disease is high
 - □ Ex: RR=1.5; I_e=125/1000 py; I_o= 85/1000 py
 - AR=40/1000 py or 4000/100,000 py

Things to know..

- Different measures of disease occurrence
- Cohort and case-control studies
- Design features
- Selecting subjects
 - Exposed and non-exposed
- Cases and controls
- Strengths and limitations
- Common biases
- Be able to identify confounding and ways to deal with confounding
- Interpretation of risk estimates (odds ratio and relative risk)