Observational Study Designs

Denise Boudreau, PhD
Center for Health Studies
Group Health Cooperative

Today
- Review cohort studies
- Case-control studies
 - Design
 - Identifying cases and controls
 - Measuring exposure
 - Risk estimate
 - Strengths and limitations
 - Biases
 - Examples
- Take home points

Review

Measures of disease occurrence
- Prevalence = number of disease/population at risk
- Cumulative incidence = new cases/population at risk
 - Closed population
- Incidence rate = new cases/person time of observation among at risk

Cohort Studies
- Study outcomes by exposure
- Subjects are disease free at start
- Can measure incidence
- Can estimate risk
- Two types: prospective and retrospective cohorts
- Bias and confounding always possibility
Cohort Studies
- Pros:
 - Incidence and risk estimates
 - Ideal for rare exposures
 - Can often show temporality of association
 - Less bias due to prospective evaluation of exposures
 - Can evaluate multiple diseases
- Cons:
 - Need motivated cohort of people who will be repeatedly evaluated if collecting prospective data
 - $$$ if prospectively collecting primary data over long period of time
 - Not efficient design for rare outcomes
 - Feasibility for studies of long duration?
 - Analysis can become complex
 - Bias always possible
 - Confounding
 - Misclassification of disease or exposure
 - Loss to follow-up
 - Non-response if collecting primary data
 - Selection bias

Bias
- Selection bias
- Surveillance bias
- Information bias and misclassification
- Confounding

How can one deal with confounding?
- Randomization
 - Assign persons to drug or placebo
 - Not always feasible or ethical
- Matching
 - Equal no. exposed & unexposed in each stratum of confounder
 - Risk of overmatching
 - Can be time-consuming, expensive, and reduce power
- Restriction
 - Look only in specific subgroup(s)
 - Generalizable only to subgroups
- Adjustment
 - Standardization, stratification, multivariate analysis, propensity scores

Example of confounding
- Drug exposure → Outcome
 - Confounder

Example of confounding by indication
- Study of SSRI use and risk of suicide
 - Cases – teenagers who committed suicide in WA state during 2001-2002
 - Controls – random sample of teenagers from school rosters, frequency matched on county and age
 - Results
 - Unadjusted OR=2.0 or 2 times increase risk of suicide among SSRI users compared to non-users
 - Adjust results by depression and depression severity and OR=1.1

Case-control studies
Case-Control Studies

- Identify individuals with disease/outcome of interest and a comparable control group
- Look back in time to determine proportion of cases and controls that were exposed and non-exposed
- Examples of exposure: medication use, environmental factor, condition, and procedures
- Examples of cases: cancer cases, adverse event, diabetic patients, patients undergoing CABG

Selection of cases and controls

- Define source population
 - General population
 - Ex: social security recipients, 3 western WA counties
 - Hospital, clinic, business
 - Eligibility criteria – often specific to study question and ensures "at risk"
 - Ex: women 65-79 years residing in 1 of 3 WA counties
 - Exclusion criteria
 - Prior diagnosis of breast cancer

Selection of Controls

- Should be selected from same population that gives rise to cases
- Similar to cases in all respects other than having disease
 - Patient characteristics, co-morbidities, etc.
 - Follow-up time
 - Ascertainment of exposure
- Selected independent of exposure
- Ex. sources
 - Population – preferred
 - School rosters, insurance lists, random digit dialing
 - Hospital or clinic based
 - Friend or sibling

Identifying Cases

- Ideally, random sample of everyone who develops disease or all diseased in sample population
 - Example: all breast cancer cases diagnosed in 3 WA county during 1997-1999
- Type of cases
 - Incident (newly diagnosed) – generally preferred
 - Prevalent
- Sources
 - Registries
 - Hospital records
 - Clinics
 - Health care utilization data
 - Work place

Matching controls to cases

- To ensure that cases and controls are comparable with respect to major risk factors for disease that not interested in evaluating
 - May also need to match on follow-up time
- Individual matching
 - For each case, a control is selected who is similar in terms of matching characteristic (e.g., age)
- Frequency matching
 - Proportion of controls with matching characteristic is identical to proportion of cases with the same characteristic
- Match at ratio of 1:1 - 4:1
 - Increase statistical power
 - At times, may want to use more than 1 type of control group
Measuring medication exposure in observational studies

- Self-report
 - Mailed questionnaire
 - Phone or in-person interview
- Medical records
- Automated health plan data
- Retail pharmacy records
- Medication inventory

Case-Control Studies

- Cannot provide direct estimate of incidence or prevalence of disease
- If incident cases are used, study provides information about relative incidence of disease in exposed vs. non-exposed
- If prevalence cases are used, study provides information about relative prevalence of disease in exposed vs. non-exposed

Case-Control

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Not Exposed</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[\text{Odds Ratio} = \frac{a}{b} / \frac{c}{d} \]

Odds Ratio

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Not exposed</td>
<td>125</td>
<td>500</td>
</tr>
</tbody>
</table>

\[\text{OR} = \frac{75}{125} / \frac{100}{500} = 3.0 \]

When does odds ratio approximate relative risk?

- The disease is rare
- Exposure frequency among cases studied is representative of that among all cases in population
- Exposure frequency among controls studied is representative of that among all non-cases in population

Odds Ratio

- Ratio of exposure among cases to exposure among controls
- Answers: What are the odds that the case was exposed?
- Measure of the association between exposure and disease
 - Varies from 0 to infinity
 - OR=1: no association
 - OR>1: exposure is a risk factor for disease; increases risk for disease
 - OR<1: exposure decreases the risk for disease
- Example:
 - OR=3.0 can be interpreted as 3 fold increase in risk
 - OR=0.5 can be interpreted as 50% decrease in risk
Disease No Disease
Exposed a b
Not Exposed c d

Odds Ratio = \(\frac{a}{b} / \frac{c}{d} \)

Relative Risk = \(\frac{a}{a+b} / \frac{c}{c+d} \)

If disease is rare
- \(a \) will be small relative to \(b \)
- \(c \) will be small relative to \(d \)
- \(= \frac{a}{b} / \frac{c}{d} = \frac{a}{c} / \frac{b}{d} \)

Case-Control Studies
- **Pros:**
 - Excellent for rare diseases
 - Look at the effect of multiple exposures in relation to disease
 - Usually inexpensive and fast
- **Cons:**
 - Can’t directly estimate incidence or prevalence
 - Bias from inappropriate controls
 - Self-reported exposure data subject to recall bias
 - Only look at one disease

Example of case-control study
- **Association between statin use and breast cancer risk**
 - Cases – 975 women 65-79 years diagnosed with primary invasive breast cancer (SEER registry) in 1997-1999 whose names appeared on list of social security recipients (CMS) & resided in 1 of 3 western WA counties
 - Controls – 1097 women whose names appeared on CMS list where matched to cases on age, diagnosis year, and county
 - Data collected by in-person interview
 - Logistic regression used to evaluate risk of breast cancer in statin users
 - Adjusted for matching variables
 - Adjusted for other confounders (ex: body mass index, HT use)
 - Long term statin users (>5 years) had reduced risk of breast cancer (OR=0.7) compared to non-users

Strengths
- Histologically confirmed breast cancer cases
- High response rate
- Data on many potential confounders

Example of case-control study
- **Antibiotic use and breast cancer risk**
 - Cases: 2266 primary invasive cases between 1993-2001 among GH enrollees
 - Controls: matched 3:1 on age and duration of enrollment for a total of 7,953
 - Data from automated health plan records

- **Strengths**
 - Cumulative days of antibiotic use associated with increased risk of breast cancer
 - Clear dose response
Antibiotic use and breast cancer risk (cont.)

- Limitations
 - Confounding by indication - no data on indication for use
 - Residual confounding and missing data
 - Conducted within one health plan in WA state

- Strengths
 - Stable population with complete data on all health care utilization (diagnoses, pharmacy, procedures, etc.)
 - Data on risk factors for breast cancer from breast cancer surveillance program
 - Complete capture of incident cases

Biases in case-control studies

- Selection bias – distort true association due to selection of subjects who either are not generalizable and/or who have unequal relationship between exposure and outcome
 - Ex: Cases that die soon after diagnosis are not represented and therefore study is only generalizable to survivors
 - Ex: Response rate varies by exposure
 - Ex: Hospital controls more likely to be sicker and more or less likely to be exposed to medications
 - Ex: Controls with disease rule out more or less likely to be exposed
 - OC use and thromboembolism

Biases in case-control studies (cont.)

- Information
 - Measurement error
 - Ex: Self reported weight underestimates true weight by average of 0.5kg
 - Differential misclassification
 - Ex: Cases recall exposure better than controls
 - Ex: Interviewers probe cases more than controls
 - Non-differential misclassification

- Confounding – distortion of association due to imbalance between exposed and non-exposed with regard to risk factor(s) for disease
 - Ex: Confounding by indication for a drug

Things to consider when reading case controls studies

- Are cases and controls similar with exception of disease?
 - Subject characteristics, data quality, follow-up
- Appropriate data collection or data source
- Appropriate time frame
- What are the potential biases?
- Potential confounders considered
- Generalizability of results
- Does study make sense and is enough information provided?

Inferring causal relations in observational studies

- Association is strong (risk estimate)
- Association makes biological sense
 - Plausible explanation
 - No plausible non-causal explanation
- Suspected cause precedes the presence of disease
- Magnitude of association is strongest when predicted to be so
 - Dose response

<table>
<thead>
<tr>
<th>Measures of risk</th>
<th>Depends on:</th>
<th>Addresses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative risk or risk ratio</td>
<td>Influence of exposure (E) on relative incidence of disease (D) in E persons</td>
<td>Does E cause D?</td>
</tr>
<tr>
<td>Odds ratio</td>
<td>Influence of exposure (E) on absolute disease (D) in exposed persons</td>
<td>How much of D is E responsible for? Should anything be done to modify E?</td>
</tr>
<tr>
<td>Hazards ratio</td>
<td>Risk ratio</td>
<td></td>
</tr>
<tr>
<td>Risk difference or attributable risk (AR)</td>
<td>Frequency of exposure (D) in exposed persons</td>
<td></td>
</tr>
<tr>
<td>= Incidence in E minus incidence in non-E</td>
<td>Frequency of disease</td>
<td>What rate of D in population is caused by E? Should resources be allocated to control E relative to other E causing greater health problems?</td>
</tr>
<tr>
<td>Population attributable risk (PAR)</td>
<td>Risk ratio</td>
<td></td>
</tr>
<tr>
<td>= Incidence in population minus incidence in non-E</td>
<td>Frequency of disease</td>
<td></td>
</tr>
<tr>
<td>Statistical significance or P value</td>
<td>Risk ratio</td>
<td></td>
</tr>
<tr>
<td>= Sample size</td>
<td>Sample size</td>
<td></td>
</tr>
<tr>
<td>= Frequency of disease or</td>
<td>Frequency of disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Influence of exposure (E) on absolute disease (D) in exposed persons
- How much of D is E responsible for? Should anything be done to modify E?
- What rate of D in population is caused by E? Should resources be allocated to control E relative to other E causing greater health problems?
- Could association between E & D have occurred by chance?
Attributable risk is also important

- RR is large but overall incidence of disease is low
 - Ex: RR=5.0; I_e=100/100,000 py; I_o=20/100,000 py
 - AR = 80/100,000 py

- RR is modest but overall incidence of disease is high
 - Ex: RR=1.5; I_e=125/1000 py; I_o=85/1000 py
 - AR=40/1000 py or 4000/100,000 py

Things to know..

- Different measures of disease occurrence
- Cohort and case-control studies
 - Design features
 - Selecting subjects
 - Exposed and non-exposed
 - Cases and controls
 - Strengths and limitations
 - Common biases
 - Be able to identify confounding and ways to deal with confounding
 - Interpretation of risk estimates (odds ratio and relative risk)