Consistency

Definition: A set Σ of formulas is *consistent* iff there is some formula ψ such that $\Sigma \not\vdash \psi$. (I.e., Σ is consistent iff not everything is derivable from Σ .)

Theorem. Σ is consistent iff for no formula φ do we have both $\Sigma \vdash \varphi$ and $\Sigma \vdash \sim \varphi$. (Equivalently, Σ is inconsistent iff for some φ both $\Sigma \vdash \varphi$ and $\Sigma \vdash \sim \varphi$.) Proof.

If both $\Sigma \vdash \varphi$ and $\Sigma \vdash \sim \varphi$, then we will show that Σ is inconsistent. For any formula ψ , the formula $[\varphi \to (\sim \psi \to \varphi)]$ is a theorem (e.g., by Axiom 1). Thus $\Sigma \vdash [\varphi \to (\sim \psi \to \varphi)]$. If $\Sigma \vdash \varphi$, then by Modus Ponens (MP) $\Sigma \vdash (\sim \psi \to \varphi)$. If also $\Sigma \vdash \sim \varphi$, then by Modus Tollens (MT) $\Sigma \vdash \sim \psi$. By Double Negation (DN), $\Sigma \vdash \psi$. So Σ is inconsistent.

Conversely, if Σ is inconsistent then every formula is derivable from Σ , in particular, some formula φ and its negation $\sim \varphi$.

The Basic Connection (TBC) (syntactic)

TBC: $\Sigma \vdash \varphi$ iff $(\Sigma \cup \{ \sim \varphi \})$ is inconsistent.

Proof.

- 1. Suppose that $\Sigma \vdash \varphi$. Then $(\Sigma \cup {\sim \varphi}) \vdash \varphi$ and since $(\Sigma \cup {\sim \varphi}) \vdash \sim \varphi$, it follows that $(\Sigma \cup {\sim \varphi})$ is inconsistent.
- 2. Suppose that $(\Sigma \cup {\sim \varphi})$ is inconsistent. Then everything can be derived from $(\Sigma \cup {\sim \varphi})$. In particular if τ is a theorem (e.g., maybe τ is " $(P \rightarrow P)$ ") then $(\Sigma \cup {\sim \varphi}) \vdash \sim \tau$. By the Deduction Theorem, $\Sigma \vdash (\sim \varphi \rightarrow \sim \tau)$. But since τ is a theorem, by DN, we have $\vdash \sim \sim \tau$ and so $\Sigma \vdash \sim \sim \tau$. Then by MT, $\Sigma \vdash \sim \sim \varphi$. Hence $\Sigma \vdash \varphi$.

Note that (by DN) another form of TBC would be $\Sigma \vdash \sim \varphi$ iff $(\Sigma \cup \{\varphi\})$ is inconsistent.

Also note that when Σ is empty TBC characterizes theorems: $\vdash \varphi$ iff $\{ \sim \varphi \}$ is inconsistent.

Homework Problem: Carry out part (2) of the TBC proof using MP and Axiom 3 $[\vdash(((\sim \alpha \rightarrow \sim \beta) \rightarrow (\sim \alpha \rightarrow \beta)) \rightarrow \alpha)]$ instead of MT and DN.