EXERCISES

- 2.1. Explain why $2 \in \{1, 2, 3\}$.
- 2.2. Is $\{1, 2\} \in \{\{1, 2, 3\}, \{1, 3\}, 1, 2\}$? Justify your answer.
- 2.3. Try to devise a set which is a member of itself.
- 2.4. Give an example of sets A, B, and C such that $A \in B$, $B \in C$, and $A \notin C$.
 - 2.5. Describe in prose each of the following sets.
 - (a) $\{x \in \mathbb{Z} | x \text{ is divisible by 2 and } x \text{ is divisible by 3} \}$.
 - (b) $\{x | x \in A \text{ and } x \in B\}$.
 - (c) $\{x | x \in A \text{ or } x \in B\}$.
 - (d) $\{x \in Z^+ | x \in \{x \in Z | \text{ for some integer } y, x = 2y\}$ and $x \in \{x \in Z | \text{ for some integer } y, x = 3y\}\}$.
 - (e) $\{x^2 | x \text{ is a prime}\}.$
 - (f) $\{a/b \in \mathbb{Q} | a+b=1 \text{ and } a,b \in \mathbb{Q}\}.$
 - (g) $\{\langle x, y \rangle \in \mathbb{R}^2 | x^2 + y^2 = 1 \}$.
 - (h) $\{\langle x,y\rangle\in\mathbb{R}^2|y=2x\text{ and }y=3x\}.$
- 2.6. Prove that if a, b, c, and d are any objects, not necessarily distinct from one another, then $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$ iff both a = c and b = d.

EXERCISES

- 3.1. Prove each of the following, using any properties of numbers that may be needed.
 - (a) $\{x \in Z | \text{ for an integer } y, x = 6y\} = \{x \in Z | \text{ for integers } u \text{ and } v, x = 2v \text{ and } x = 3v\}.$
 - (b) $\{x \in \mathbb{R} | \text{ for a real number } y, x = y^2\} = \{x \in \mathbb{R} | x \ge 0\}.$
 - (c) $\{x \in Z \mid \text{ for an integer } y, x = 6y\} \subseteq \{x \in Z \mid \text{ for an integer } y, x = 2y\}$
 - 3.2. Prove each of the following for sets A, B, and C.
 - (a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
 - (b) If $A \subseteq B$ and $B \subset C$, then $A \subset C$.
 - (c) If $A \subset B$ and $B \subseteq C$, then $A \subset C$.
 - (d) If $A \subset B$ and $B \subset C$, then $A \subset C$.
- 3.3. Give an example of sets A, B, C, D, and E which satisfy the following conditions simultaneously: $A \subset B$, $B \in C$, $C \subset D$, and $D \subset E$.
 - 3.4. Which of the following are true for all sets A, B, and C?
 - (a) If $A \not\in B$ and $B \not\in C$, then $A \not\in C$.
 - (b) If $A \neq B$ and $B \neq C$, then $A \neq C$.
 - (c) If $A \subseteq B$ and $B \not\subseteq C$, then $A \not\subset C$.
 - (d) If $A \subset B$ and $B \subseteq C$, then $C \nsubseteq A$.
 - (e) If $A \subseteq B$ and $B \in C$, then $A \not\in C$.
 - 3.5. Show that for every set A, $A \subseteq \emptyset$ iff $A = \emptyset$.
 - 3.6. Let A_1, A_2, \dots, A_n be n sets. Show that

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq A_1$$
 iff $A_1 = A_2 = \cdots = A_n$.

- 3.7. Give several examples of a set X such that each element of X is a subset of X.
 - 3.8. List the members of $\mathcal{O}(A)$ if $A = \{\{1, 2\}, \{3\}, 1\}$.
- 3.9. For each positive integer n, give an example of a set A_n of n element such that for each pair of elements of A_n , one member is an element of the other

- 4.6. Suppose A and B are subsets of U. Show that in each of (a), (b), and (c)below, if any one of the relations stated holds, then each of the others holds.

 - (a) $A \subseteq B$, $\overline{A} \supseteq \overline{B}$, $A \cup B = B$, $A \cap B = A$.
 - (b) $A \cap B = \emptyset$, $A \subseteq \overline{B}$, $B \subseteq \overline{A}$.
 - (c) $A \cup B = U, \overline{A} \subseteq B, \overline{B} \subseteq A$.

 $\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} - \{\{\emptyset\}\}.$

- 6.2. Write the members of $\{1, 2\} \times \{2, 3, 4\}$. What are the domain and range of this relation? What is its graph?
- 6.3. State the domain and the range of each of the following relations, and then draw its graph.
 - (a) $\{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x^2 + 4y^2 = 1\}$.
 - (b) $\{\langle x, y \rangle \in \underline{R} \times \underline{R} \mid x^2 = y^2 \}$.
 - (c) $\{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid |x| + 2|y| = 1\}$.
 - (d) $\{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 < 1 \text{ and } x > 0\}$.
 - (e) $\{\langle x,y\rangle\in\mathbb{R}\times\mathbb{R}\mid y\geq 0\text{ and }y\leq x\text{ and }x+y\leq 1\}.$
- 6.4. Write the relation in Exercise 6.3(c) as the union of four relations and that in Exercise 6.3(e) as the intersection of three relations.
- 6.5. The formation of the cartesian product of two sets is a binary operation for sets. Show by examples that this operation is neither commutative nor associative.

7.6. Give an example of these relations. (a) A relation which is reflexive and symmetric but not transitive in some set. (b) A relation which is reflexive and transitive but not symmetric in some set. (c) A relation which is symmetric and transitive but not reflexive in some set.

- 8.4. Using only mappings of the form $f: \mathbb{Z}^+ \to \mathbb{Z}^+$, give an example of a function which
 - (a) is one-to-one but not onto;
 - (b) is onto but not one-to-one.
 - 8.5. Let $A = \{1, 2, \dots, n\}$. Prove that if a map $f: A \rightarrow A$ is onto, then it is
- one-to-one, and that if a map $g: A \rightarrow A$ is one-to-one, then it is onto.