Interpretations and Models

An interpretation provides a specific domain of quantification (the universe) and assigns to the predicates specific relational properties over that domain; thus an interpretation gives us the extensions of our terms and provides truth conditions for all the closed formulas (sentences). A model is an interpretation that makes all our sentences true.

Formally, let Σ be a set of sentences of predicate logic (i.e., closed formulas -- no free variables). By the vocabulary of Σ we mean all the name letters (NL), sentence letters (SL) and predicate letters (PL) occurring in any of the sentence in Σ , plus *any* variable. We assume that the universe U of an interpretation is never empty.

An interpretation I of Σ in universe U is a function on the vocabulary of Σ (excluding the variables) whose values are called "extensions", defined as follows.

I(NL in vocab Σ) is an element in the universe U.

I(SL in vocab Σ) is either U or the empty set Φ .

I(n-place PL in vocab Σ) is a subset of the n-fold Cartesian product of U, Uⁿ.

Truth relative to an interpretation.

We want to define truth values (i.e., a valuation function val_i) relative to an interpretation I. So proceed as follows.

1.
$$val_I(SL) = \begin{cases} \frac{\text{True, if } I(SL) = U}{\text{False, if } I(SL) = \Phi} \end{cases}$$

2. $val_1[F^n(A_1, A_2, ..., A_n)] = T iff \langle I(A_1), I(A_2), ..., I(A_n) \rangle \in I(F^n)$ for any n-place predicate F^n and name letters $A_1, A_2, ..., A_n$.

3.
$$val_I(\sim \varphi) = \begin{cases} \frac{T, \text{ if } val_I(\varphi) = F}{F, \text{ if } val_I(\varphi) = T} \\ 4. val_I(\varphi \rightarrow \psi) = T \text{ iff } val_I(\varphi) = F \text{ or } val_I(\psi) = T \end{cases}$$

To get to quantification we extend the vocabulary of Σ by adding a new name letter 't' not occurring in any sentence of Σ . For $u \in U$, by I_u^t we mean an interpretation that agrees with I on the vocabulary of Σ , and assigns to the new name letter 't' the element u of U:

$$I_u^t(t) = u$$
 and $I_u^t(\gamma) = I(\gamma)$ for $\gamma \in vocabulary Σ and $\gamma \neq t$.$

If $\phi(\alpha)$ is a formula with at most the one free variable α and 't' is the new name letter, then write $\phi(\alpha/t)$ for the result of replacing all free occurrences (if any) of the variable α in $\phi(\alpha)$ with the name letter 't'.

Examples. If $\phi(x)$ is ' $(\Lambda y F x y \to \Lambda x G x)$ ', then $\phi(x/t)$ is ' $\Lambda y F t y \to \Lambda x G x$ '. If $\phi(x)$ is ' $\Lambda x F A x$ ', then $\phi(x/t)$ is ' $\Lambda x F A x$ ' [note here that 'x' is not free in $\phi(x)$].

Then we define val $[\Lambda \alpha \phi(\alpha)]$ as follows:

$$val \left[\Lambda \alpha \phi(\alpha) \right] = \begin{cases} T \text{ iff } \forall u \in U, val \phi(\alpha/t) = T \\ F \text{ iff } \exists u \in U, val \phi(\alpha/t) = F \\ I''_{n} \end{cases}$$

Examples.

1.
$$val[\Lambda xFx] = T$$
 iff $\forall u \in U$, $val[Ft] = T$, I_u^t iff $\forall u \in U$, $I_u^t(t) \in I_u^t(F)$, iff $\forall u \in U$, $u \in I(F)$.

2.
$$\operatorname{val}\left[\Lambda x \Lambda y G(xy)\right] = T$$
 iff $\forall u \in U$, $\operatorname{val} \Lambda y G(t \ y) = T$,

$$I_{u}^{t}$$
iff $\forall u \in U \& \forall u' \in U$, $\operatorname{val} G(t \ t') = T$,

$$I_{uu'}^{t'}$$
iff $\forall u \in U \& \forall u' \in U$, $\langle I_{uu'}^{t \ t'}(t), I_{uu'}^{t \ t'}(t') \rangle \in I_{u \ u'}^{t \ t'}(G^{2})$
iff $\forall u \in U \& \forall u' \in U$, $\langle u, u' \rangle \in I(G^{2})$

Problems:

1. Prove that val
$$[V\alpha\phi(\alpha)] = \begin{cases} T \text{ iff } \exists u \in U, val \phi(\alpha/t) = T \\ F \text{ iff } \forall u \in U, val \phi(\alpha/t) = F \end{cases}$$

- 2. Show that (a) val [VxFx] =T iff ∃u∈U such that u∈I (F);
 (b) val [VxVy G(xy)] =T iff ∃u∈U &∃u'∈U such that <u, u'>∈I(G²).
- 3. Write out the truth conditions for $\Lambda x Vy \Lambda z F(xyx)$.

Models, Satisfiability and Semantic Consequence

An interpretation I of a set Σ of sentences is a model for Σ just in case $val_1(\varphi) = T$, $\forall \varphi \in \Sigma$.

We say that Σ is satisfiable iff Σ has a model.

We write $\Sigma \models \varphi$ iff every interpretation of $\Sigma \cup \{\varphi\}$ that is a model of Σ is also model of $\{\varphi\}$.