Definition of a derivation for axiomatic sentential logic.

$$\Sigma \vdash \phi$$

There is a finite sequence of formulas L1, L2, ..., Ln such that

- (1) Ln is φ
- and (2) for $i \le n$, either Li is an axiom, or Li is in Σ , or
 - (3) there are j, k < i such that Li follows from Lj and Lk by Modus Ponens.

We write $\vdash \phi$ for $\emptyset \vdash \phi$,

and $(\Sigma + \psi) \vdash \phi$ for $\Sigma \cup \{\psi\} \vdash \phi$, and we often omit the set builder braces and write $\phi 1, \phi 2, \phi 3, \dots, \phi n \vdash \phi$ for $\{\phi 1, \phi 2, \phi 3, \dots, \phi n\} \vdash \phi$

- (1) For any formula ϕ , $\phi \vdash \phi$.
- (2) $(\Sigma + \psi) \vdash \phi \text{ and } \vdash \psi \implies \Sigma \vdash \phi$.
- (3) $\Sigma \vdash \psi$ and $\Sigma \subseteq \Sigma' \Rightarrow \Sigma' \vdash \psi$ Cor. $\vdash \phi \Rightarrow \Sigma' \vdash \phi$ for any set Σ' of formulas.
- (4) Finiteness Condition for \vdash . $\Sigma \vdash \phi \implies$ there is a finite subset $\Sigma_f \subseteq \Sigma$ such that $\Sigma_f \vdash \phi$.
- (5) If $\Sigma \vdash \phi$ and for every formula ψ in Σ , $\Sigma' \vdash \psi$, then $\Sigma' \vdash \phi$. (Transitivity)
- (6) Deduction Theorem (sentential logic) If $(\Sigma + \psi) \vdash \phi$, then $\Sigma \vdash (\psi \rightarrow \phi)$.
- (7) If $\Sigma \vdash (\phi \rightarrow \psi)$ and $\Sigma \vdash \phi$, then $\Sigma \vdash \psi$. (Modus Ponens!)

Definition: A set Σ of formulas is **consistent** iff there is *some* formula ψ such that $\Sigma \not\models \psi$. Otherwise, Σ is **inconsistent** (that is, iff for every formula ψ , $\Sigma \vdash \psi$)

(8) The Basic (Syntactic) Connection. $\Sigma \vdash \phi$ iff $\Sigma \cup \{ \sim \phi \}$ is inconsistent. (Equivalently, $\Sigma \vdash \sim \phi$ iff $\Sigma \cup \{ \phi \}$ is inconsistent.)