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PEANO ARITHMETIC & ITS NONSTANDARD MODELS

We look at a (first-order) language whose vocabulary consists of a single name letter
(constant) "1", a 1-place function letter S, two 2-place function letters ˙ and Ó, and a
2-place predicate letter <<<<

Let ∏ be the theorems of arithmetic; i.e., the (closed) deductive consequences of the
following sentences (the axioms of Peano arithmetic).

1. ¡x [S(x)≠1]
2. ¡x¡y[S(x)=S(y)∞x=y]
3. ¡x[x˙1=S(x)]
4. ¡x¡y[x˙S(y)=S(x˙y)]
5. ¡x[xÓ1=x]
6. ¡x¡y[xÓS(y)=(xÓy)˙x]
7. ¡x¡y[x<<<<yfl⁄z(y=x˙z)]
8. For every formula Ï(x) of the language that contains only x free,

[Ï(1) ¡¡x[Ï(x)∞Ï(S(x))] ∞¡xÏ(x)

Add to the vocabulary of ∏ a new name letter å and, for every n, let ån be the sentence
defined as follows. å1 is"1<<<<å" and if ån is "x<<<<å" then ån+1 is "S(x)<<<<å". This yields :
1<<<<å, S(1)<<<<å, SS(1)<<<<å, ...  . Thus ån says "å is greater than the (n-1)th successor of 1";
i.e., that å is greater than n.

Consider the sentences ∏* = ∏‰{å1, å2, ..., ån, ...}.

Every finite subset of ∏* has a model. For every finite subset ∑ of ∏* includes at most
finitely many ån. Look at the largest n such that ån is in ∑ and choose any number greater
than that n as the extension of å. This choice for å will satisfy all the å1, å2, ..., ån
sentences and then all of ∑ will be satisfied by the arithmetic of the natural numbers
{1, 2, ... } under the usual conventions regarding successor, addition, multiplication, and
the less-than relation.

By compactness it follows that ∏* has a model. Call it M*. All the theorems of arithmetic
are satisfied in M* and, according to the Löwenheim-Skolem theorem, we can assume that
the universe of M* is countably infinite. M* has extensions for 1, S(1), SS(1), etc. Let's
call them 1, 2, 3 ... as usual. And similarly we can call the extensions in M* of ˙, Ó and
<<<<    by the usual names of +, . , and <. But M* also contains an extension for the new
constant å. Let's call it ∫.

M* is usually referred to as a "nonstandard" model of arithmetic, and ∫ as a nonstandard
number. (The standard model of arithmetic, consisting of the standard numbers 1, 2, 3 ...
under the usual operations and relations, is also in M*.) We are going to try to work out
what the universe of a nonstandard model, like M*, looks like.

1. Although the universe of M* is countable there is no way to make it correspond one-to-
one with the standard numbers in a way the preserves order, since ∫ has to be greater than
every standard number. So the standard and nonstandard models are not isomorphic.
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2. Starting with ∫ we can taking successors to get: ∫<∫+1<∫+2, ...  . Since it is a theorem
of arithmetic that every number except 1 is the successor of another number, ∫ will be the
successor of another number, call it ∫-1, and that the successor of another, etc. Thus we
have in M*

...,∫-n, ..., ∫-2, ∫-1, ∫, ∫+1, ∫+2, ...∫+n, ...

This is an infinite sequence, in order, that ascends and descends from ∫ -- just as the
integers ascend and descend from 0. Each number in this "cluster" around ∫ is
nonstandard; i.e., greater than all the standard numbers. (For if any number in the cluster
were equal to a standard number, then ∫ would either be the successor or the descendent of
a standard number -- and not greater than all of them.)

3. Consider now ∫+∫. Since it is a theorem of arithmetic that adding a number to itself
produces a bigger number, ∫<∫+∫. As above, we can construct the infinite cluster
(∫+∫) ± n around (∫+∫). None of the numbers in this cluster are standard and none occur
in the ∫±n cluster, for either situation would make ∫ standard. (For example, if ∫+m=∫+∫
then ∫=m.) Hence they are all greater than ∫. Thus adding nonstandard numbers gives us
new and bigger ones and each such number is surrounded by a cluster of its successors and
predecessors. So there isn't any biggest cluster.

4. Moreover there isn't any smallest cluster of nonstandard numbers either. For it is a
theorem of arithmetic that for any number x > 1, there is a smaller number y such that either
2y=x or 2y=x+1. So if ∫ is nonstandard then there is a ˝<∫ such that either ˝+˝=∫ or
˝+˝=∫+1. In either case if ˝ were standard, ∫ would be too. Moreover ˝ can't differ from ∫
by any standard number without that forcing ˝ to be standard. For example of ˝+n=∫ and
˝+˝=∫, then ˝=n. In the alternative, ˝+˝=∫+1, but then ˝+˝=(˝+n)+1 and so ˝=n+1.

5. It gets stranger. Suppose „1 < „2 are nonstandard numbers where „1≠ „2±m, for any
standard m. (E.g., like ∫ and ∫+∫ in (3) above.) Then there is a nonstandard number ˝,
„1 < ˝ <„2, where ˝ ≠ „1±n, for any standard n, and similarly ˝ ≠ „2±n, for any standard
n. For example we can get such a ˝ by starting with the sum („1 + „2). Either
(„1 + „2)=2˝ or 2˝+1 for some number ˝ (i.e., the sum is either even or odd). Suppose the
former. Then the mean („1 + „2)/2 is a whole number ˝. But the mean lies between „1 and
„2; that is, „1 <˝< „2. [PPPPRRRROOOOVVVVEEEE    IIIITTTT!] So ˝ must be an infinite, nonstandard number, since
it is larger than the nonstandard „1. Moreover, ˝ belongs neither to the „1-cluster, nor to
the „2-cluster. For instance if it were the case that ˝= „2±n, then („1 + „2)=2˝=2„2±2n.
But then subtract off „2 and we would have that „1= „2±2n, contrary to the choice of „1
and „2 as belonging to different clusters. A similar argument hold in the case where
(„1 + „2)=2˝+1. Since ˝ has its own cluster, this means that between any two clusters
there is a third.

So then what does the universe of M* look like? It consists, first, of all the standard
numbers in order. They are followed (in the "<" order) by an array of nonstandard clusters
arranged in an order like that of the rational numbers, with neither a smallest nor a largest
cluster, and with clusters occuring between any two.

Nevertheless, it follows from compactness that this entire nonstandard structure satisfies all
the axioms of Peano arithmetic; i.e., that all arithmetical theorems are true in this structure.


