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THE BELL THEOREM 
 

 The Bell theorem is a demonstration that a plausible way of picturing (or 
modeling) how the results of measurements occur, when made precise, leads to definite 
relations between the statistics in different measurements (the "Bell inequalities"), 
relations that are violated for a certain class of quantum mechanical experiments. 
 In the experiments an atomic source steadily decays and emits pairs of spin-1/2 
particles (e.g., electrons) in the singlet state (so, the total spin is 0, and it is conserved). 
After emission, the electrons in a pair separate and move in opposite directions to distinct 
wings of the experimental apparatus for observation.  In the wings there are instruments 
that can be set to measure the spin component of an electron along one of two directions 
in the plane perpendicular to the electron's line of motion.   
 
       Bernard's Wing     Amalie's Wing 

  
RUNS:   A_B,   A_B',   A'_B,    A'_B' 

 
Thus the experiment involves the measurement of four variables either A or A' (for one 
particle in a pair) and either B or B' (for the other particle in the same pair), 
corresponding to the four possible orientations for the measurement of spin.  A particular 
spin measurement has two possible outcomes: the electron is either spinning clockwise 
("up") or counterclockwise ("down") in the measured direction.  We will record the "up" 
result with a "+1" and the "down" with a "-1".  Under these conventions each of the four 
variables takes either +1 or -1 as a value.  In four separate runs, on paired particles, we 
measure orientations A with B, then A with B' then A' with B, and finally A' with B'.  The 
best tested experimental geometry corresponds to the situation where the relative angle 
between directions in the first three runs (A/B, A/B', and A'/B) is 135o  and the relative 
angle between the orientations in the last run (A'/B') is 45o , as in the diagram below. 
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 In a number of experiments of this type ( more accurately, in experiments 
involving photon polarization, which is formally similar to electron spin) the statistics 
predicted by the quantum theory have been very well-confirmed. (See Weihs et al 1998.)  
The statistics are these (Clauser and Horne 1974). 

P(A) = P(B) = P(A') = P(B') =  0.5 (1) 

P(AB) = P(AB') = P(A'B) = 
1
2  sin2(

135o
2  ) = 0.4268         and  (2i) 

P(A'B') =  
1
2  sin2(

45o
2  ) = 0.0732 (2ii)  

(We write P(A) for Prob(A=+1) and P(AB) for Prob(A=+1 & B=+1), and similarly for 
the other variables.)    
 Suppose that there were factors ("hidden variables") that determined the 
experimental outcomes, or more generally, their probability.  Let "λ" range over the 
factors that determine the probability of a measurement outcome in each individual case. 
Thus if an emitted pair is characterized by a particular factor λ and we measure A ( or A') 
on one particle in the pair then λ (or its relevant component) determines the probability 
that the result of the A-measurement is +1; similarly λ would determine the probability 
for the outcome to be +1 if we measure B (or B') on the other particle in the pair.  This 
understanding represents the probability for the (+1) measurement outcomes by 
"response" functions p(A, λ), p(B, λ), p(A', λ) and p(B', λ) taking values between 0 
and 1, depending on the determining factor λ (LOCALITY) .We will show that under 
certain plausible assumptions, such a  representation is inconsistent with the data in (1) 
and (2).  

 For that purpose, notice that if numbers p, q and r all lie between 0 and 1, then  
qr = pqr + (1-p)qr  ≤  pr + (1-p)q  =  pr − pq + q,  
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since multiplying by  numbers between 0 and 1 may only decrease the value of the 
original.  Thus the following inequality holds 

qr  ≤  pr − pq + q . 
Because averaging over the values of variables preserves sums, differences and order, it 
follows that  

〈qr〉  ≤  〈pr〉  −  〈pq〉 + 〈q〉 (Basic Inequality) 
if p, q, and r are variables taking values between 0 and 1, and 〈·〉  denotes the average (or 
expected) value of the enclosed variable(s).  
 To connect this with the correlation experiment, we suppose that the observed 
probability for a measurement outcome in a run is simply the average (over all the hidden 
factors) of the probabilities for individual outcomes; that is, we assume 

P(A) = 〈p(A, λ) 〉  
(and similarly for P(B), P(B'), and P(A').  We also assume that the outcomes at λ are 
uncorrelated, so the probability p(AB, λ) at a factor λ for the pair of outcomes  A = +1 
and B = +1 is the product of the probabilities at λ for each outcome separately; that is 

p(AB, λ) = p(A, λ)⋅  p(B, λ).   (FACTORIZABILITY) 
Then, as in the case of the individual outcomes, the probability for pairs is obtained by 
averaging over all the hidden factors; i.e.,  

P(AB) = 〈p(AB, λ)〉  =  〈p(A, λ)·p(B, λ)〉 . 
(and similarly for the other pairs AB', A'B and A'B'.) 
 If in the basic inequality we now set q = p(B, λ), r = p(B', λ) and p = p(A', λ)  
then, when we substitute the overall probabilities for the averages as above, we find that 

〈p(B, λ).p(B', λ)〉  ≤  P(A'B')  -  P(A'B)  +  P(B). 
If we perform the same substitutions for the averages, but this time setting q = p(A, λ),  
r = p(B', λ), and p = p(B, λ) in the basic inequality, then (after transposing) we have that 

P(AB')  +  P(AB)  -  P(A)  ≤  〈p(B, λ).p(B', λ)〉. 
Combining these two inequalities yields 

P(AB) + P(AB') + P(A'B) - P(A'B')  ≤  P(A) + P(B). (Bell Inequality) 
From (2) the left hand side equals 1.207 and from (1) the right hand side equals 1, in 
violation of the inequality.  Thus the supposition that there are factors determining the 
probabilities for measurement outcomes, as above, leads to the Bell inequality, which is 
inconsistent with the experimental data in (1) and (2). 
 In addition to factorizability, which blocks any correlation between the probable 
outcomes at λ, the preceding demonstration involves "locality" assumptions about the 
measurement procedure.  In representing the probabilities for measurement outcomes as 
functions of certain determining factors λ, we suppose that the probability for an outcome 
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of a measurement in one wing, say A, is not affected by which of the variables (B or B') 
is measured in the other wing.  If there were correlations between the measurement 
performed in one wing and the probability for an outcome obtained in the other wing we 
should have to represent the probability that A=+1 at λ not by p(A, λ) but by p(A, λ, B) 
or p(A, λ, B').  In that case, however, the preceding argument would not go through.  For 
similar reasons we have to assume that the factor λ that determines the outcome-
probabilities does not depend on the particular measurements being carried out in the 
wings ("Measurement Independence").   
 In the quantum mechanical experiment described above we can arrange things so 
as to be reasonably certain that the spin measurements of the particles in an emitted pair 
are spacelike-separated; i.e., that the systems are so far apart and the times of separate 
measurements on a pair are so close that no signals (or "influences") with speeds less 
than (or equal to) that of light can pass between them (Aspect et al  1982 and Weihs et al 
1998).  To insure measurement independence (sometimes called "freedom of choice") we 
also want the emission of a pair with a given λ to be spacelike-separated from the 
operations that set the measurements to be performed. This too has been accomplished 
(Scheid et al 2010). 

APPENDIX 
 There is another relation implied by the preceding locality and factorizability 
assumptions, one that bounds the quantity [P(AB) + P(AB') + P(A'B) - P(A'B')] from 
below.  We can derive it using an argument similar to the one above.  So suppose, as 
above, that the numbers p, q and r all lie between 0 and 1.  Then  
  (1-p)(1-q)(1-r)  =  (1-p)(1-r) - q(1-p)(1-r) 
      =  1 - p - r + pr - q(1-p) + q(1-p)r  
      ≤  1 - p - r + pr - q + pq + qr. 
So, since 0 ≤ (1-p)(1-q)(1-r),  

p + q + r  ≤  1 + pq + pr + qr. 
If we now set  q = p(B, λ), r = p(B', λ) and p = p(A, λ), and take the average over all the 
factors λ, then we have that  

P(A) + P(B) + P(B')  ≤  1 + P(AB) + P(AB') + 〈p(B, λ).p(B', λ)〉 
i.e., that 

P(A) + P(B) + P(B') - 1- P(AB) - P(AB')  ≤  〈p(B, λ).p(B', λ)〉. 
Also, 

qr = pqr + (1-p)qr  ≤  pq + (1-p)r  =  pq - pr + r,  
so 

qr  ≤  pq - pr + r. 
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Putting q = p(B, λ), r = p(B', λ) and p = p(A', λ), and averaging, produces 
 〈p(B, λ).p(B', λ)〉  ≤  P(A'B) - P(A'B') + P(B'). 

Putting together the inequalities involving 〈p(B, λ).p(B', λ)〉 yields  
P(A) + P(B) + P(B') - 1- P(AB) - P(AB')  ≤  P(A'B) - P(A'B') + P(B'), 

or 
P(A) + P(B) - 1  ≤  P(AB) + P(AB') + P(A'B) - P(A'B'). (Bell Inequality) 
 

 As with the first Bell inequality this one is violated in the spin-1/2 experiments as 
well.  Consider the situation where the relative angle between directions in the first three 
runs (A/B, A/B', and A'/B) is 45o  and the relative angle between the orientations in the 
last run (A'/B') is 135o , as in the diagram below. 
 

 
 
 
 

P(AB) = P(AB') = P(A'B) = 
1
2  sin2(

45o
2  ) = 0.0732  

 

P(A'B') =  
1
2  sin2(

135o
2  ) =0.4268.   

 

Here, again, all the single probabilities are  
1
2  .  The preceding Bell inequality then 

implies that  0  ≤  − 0.207!  If we combine the two Bell inequalities, we obtain 
P(A) + P(B) - 1  ≤  P(AB) + P(AB') + P(A'B) - P(A'B')  ≤ P(A) + P(B). 
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In the spin-1/2 case the single probabilities are all  
1
2   and this reduces to  

0  ≤  P(AB) + P(AB') + P(A'B) - P(A'B')  ≤  1. 
There are three more Bell inequalities, obtained from the above by first interchanging A 
with A', then B with B', and finally both A with A' and B with B' together.   
 The system of all these inequalities taken together constitutes the necessary and 
sufficient conditions that a correlation experiment involving the four distinct orientations 
A, A', B and B' has a statistical model that determines the probabilities for measurement 
outcomes in accord with the twin requirements of locality and factorizability (Fine 1982).  
The failure of the quantum statistics to satisfy these inequalities shows that it is not 
possible to model the quantum probabilities in this way. Of course there may be other 
sorts of models. Moreover, when inefficiencies of actual experiments are taken into 
account some models of the sort discussed here also become possible. 
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