Below is a sketch of the Hardy Paradox.*

Let ψ be the state of the separated system for a typical 2×2 EPRB experiment. Suppose we can expand it in eigenstate of the component observables $\mathrm{A}, \mathrm{B} ; \mathrm{A}^{\prime}, \mathrm{B} ; \mathrm{A}, \mathrm{B}^{\prime} ;$ and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ respectively as follows
(1) $\psi=a_{1} 10+a_{2} 01+a_{3} 00$
where 10 is the product $|A=1\rangle|B=-1\rangle$ of A, B eigenstates; 01 is the product $|A=-1\rangle|B=1\rangle$ and 00 is the product $|A=-1\rangle|B=-1\rangle$. (We assume also that the coefficients a_{n} are non-zero and the sum of their absolutes values squared is 1.) Since there is no 11 term(i.e., $|A=1\rangle|B=1\rangle$ that coefficient is zero. Hence the probability $\mathrm{P}(\mathrm{AB})=0$ that $\mathrm{A}=1$ and $\mathrm{B}=1$ in state ψ.
(2) $\quad \psi=b_{1} 11+b_{2} 01+b_{3} 00$ where here the 11,01 and 00 terms are products of the A^{\prime} with B eigenstates. That there is no 10 term means that the probability is zero that $\mathrm{A}^{\prime}=1$ and $B=0$. Hence, where $P\left(B \mid A^{\prime}\right)$ is the conditional probability that $B=1$ given that $A^{\prime}=1$, then $\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\prime}\right)=1$.
(3) $\quad \psi=c_{1} 11+c_{2} 10+c_{3} 00$ where here the 11,10 and 00 terms are products of the A with B^{\prime} eigenstates. That there is no 01 term means that the probability is zero that $\mathrm{A}=-1$ and $\mathrm{B}^{\prime}=1$. Hence, $\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)=1$.
(4) $\quad \psi=d_{1} 11+d_{2} 10+d_{3} 01+d_{4} 00$ where these terms are products of the A^{\prime} with B^{\prime} eigenstates and where $\left|d_{4}\right|^{2} \neq 0$. Hence $\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right) \neq 0$.

Thus we have $P(A B)=0, P\left(B \mid A^{\prime}\right)=1$ and $P\left(A \mid B^{\prime}\right)=1$. So we can argue as follows.
In the state ψ not both A and B are 1 . But $\mathrm{A}^{\prime}=1$ implies that $\mathrm{B}=1$. And $\mathrm{B}^{\prime}=1$ implies that $A=1$. Hence we can't have that both $A^{\prime}=1$ and $B^{\prime}=1$. Yet according to (4) there is some non-zero probability for exactly that!

Problem. Find the assumptions that resolve the fallacy. (Hint: What entitles us to put the $\mathrm{A}, \mathrm{B}, \mathrm{B}^{\prime}$ probabilities together with the $\mathrm{A}^{\prime}, \mathrm{B}, \mathrm{B}^{\prime}$ ones??)

[^0]
[^0]: * L. Hardy, Nonlocality For Two Particles Without Inequalities For Almost All Entangled States.Physical Review Letters 71, 1665-68 (1993). See also S. Goldstein, Nonlocality without Inequalities for Almost All Entangled States for Two Particles, Physical Review Letters 72, 1951-3 (1994); N. David Mermin, Quantum Mysteries Refined. American Journal of Physics 62, 880-887 (1994) and A. Fine Locality and the Hardy Theorem, in Jeremy Butterfield and Constantine Pagonis (eds.), From Physics to Philosophy, Cambridge: Cambridge University Press, 1999, pp. 1-11.

