
THE KOCHEN-SPECKER/BELL/ FINE-TELLER THEOREM: a la PERES 
 

 We consider an EPR/Bohm spin-1/2 experiment, schematized below, where the 
σs are the spin-component operators (or, ambiguously, the spin observables) defined on 
the two subsystems (System 1 & System 2). 
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The state ψ of the two-particle composite system is the "singlet state," which can be 
written as 

ψ = 
1
2   [φ

+
1(α)  ⊗ φ−2(α) ]  −  1

2   [φ−1(α)  ⊗ φ+
2(α) ]   

where α may be any direction (including x, y, or z) and where 
 

σ
1
α  = the spin component in direction α on System 1 = 

⎩⎪
⎨
⎪⎧+1  in state φ

+
1(α)

−1  in state φ−1(α)
             and 

 

σ
2
α  = the spin component in direction α on System 2 = 

⎩⎪
⎨
⎪⎧+1  in state φ

+
2(α)

−1  in state φ−2(α)
 .  

 
In state ψ the total spin in any direction is zero; i.e., if the spin is found to be "up" (+1) in 
direction α on one system it will be "down" (−1) in direction α on the other system, and 
vice versa . (Put otherwise, the product of the spin components on the separate systems in 

the same direction is always −1.)  Suppose we make a measurement of  σ
1
x   on System 1 

and (simultaneously) of  σ
2
y   on System 2, finding, respectively, values a and b.  We can 

then cross-infer the values for  σ
2
x   and for  σ

1
y  ,  to get the results as follows. 

 Observables:  σ
1
x   , σ

2
y   , σ

2
x   , σ

1
y   

 Values: a   , b  , -a  , -b 
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Since the only possible values for a and b are ±1, if we multiply them together the 
product (ab) will also be ±1, and its square (ab)2 = 1.  So we have that 
 

  val [(σ
1
x ⋅σ

2
y  )(σ

1
y ⋅σ

2
x  )] =  val (σ

1
x ⋅σ

2
y  )⋅val (σ

1
y ⋅σ

2
x  ) 

       =  val (σ
1
x  )⋅val (σ

2
y )⋅val (σ

1
y  )⋅val (σ

2
x  ) 

       =  a ⋅ b ⋅(-b) ⋅(-a) 
       =  (ab)2.   
Hence,   

 val [(σ
1
x ⋅σ

2
y  )(σ

1
y ⋅σ

2
x  )]   =  1. (*) 

However, by using standard relationships between the various spin operators we can 

calculate the value of the product [(σ
1
x ⋅σ

2
y  )(σ

1
y ⋅σ

2
x  )] in a second way.  First of all, the 

spin operators in orthogonal directions (like "x" and "y" above) on a single system (say, 
System 2) anti-commute; that is, 
 

(σ
2
x ⋅σ

2
y  ) = − (σ

2
y ⋅σ

2
x  ). 

Also, spin in the z-direction is related to spin in the x- and y-directions by the equations 
 

σ
1
z  = i (σ

1
x ⋅σ

1
y  ) 

σ
2
z  = i (σ

2
x ⋅σ

2
y  ) 

where i2 = −1.  Using (σ
2
x ⋅σ

2
y  ) = − (σ

2
y ⋅σ

2
x  ) we can rewrite the expression for σ

2
z  , 

σ
2
z  = −  i (σ

2
y ⋅σ

2
x  ). 

Using the fact that (σ
1
y  ⋅σ

2
y  ) = (σ

2
y  ⋅σ

1
y  ) we can readily calculate (σ

1
z ⋅σ

2
z  ) from the above 

relations as follows. 
 

    (σ
1
z ⋅σ

2
z  ) = i (σ

1
x ⋅σ

1
y  )⋅(−  i ) (σ

2
y ⋅σ

2
x  ) = −(i2) (σ

1
x ⋅σ

1
y  )(σ

2
y ⋅σ

2
x  ) = (σ

1
x ⋅σ

2
y  )(σ

1
y  ⋅σ

2
x  ). 

Thus, reading from far left to far right, 

val (σ
1
z ⋅σ

2
z  ) = val [(σ

1
x ⋅σ

2
y  )(σ

1
y  ⋅σ

2
x  )]. 

According to (*), the RHS = +1.  
 Now we know that for direction z, like any other, the spin values on the two 
systems are opposite to one another; i.e., that 

 val (σ
1
z ⋅σ

2
z  ) = val (σ

1
z  )⋅val (σ

2
z  ) = −1. (**) 
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(Indeed, the singlet state ψ is  an eigenstate of (σ
1
z ⋅σ

2
z  ) with eigenvalue −1, so the only 

possible value for (σ
1
z ⋅σ

2
z  ) is −1.)   

 So from (**) the LHS of the boxed equation = −1.  Since −1≠ 1 (!), it follows that 
we cannot consistently assign values as above. 
 
 An examination of the calculations shows that the principles we used to assign 
values are just these: 
 
1)   The only possible values for an observable A of a system in a state ψ are the 
eigenvalues of A that have non-zero probability in ψ.    (EIGENVALUE PRINCIPLE) 
 
2)   If A and B commute, then val (A⋅B) = val (A)⋅val (B).    (PRODUCT RULE) 
 
Thus we have established the following "no-go" ("Dass geht nicht.") theorem. 
THEOREM: 

THERE IS NO ASSIGNMENT OF EXACT VALUES TO THE QUANTUM OBSERVABLES THAT 

SATISFIES THE EIGENVALUE PRINCIPLE AND THE PRODUCT RULE.  
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