The Kochen-Specker/bell/ Fine-Teller Theorem: a la Peres

We consider an EPR/Bohm spin-1/2 experiment, schematized below, where the σs are the spin-component operators (or, ambiguously, the spin observables) defined on the two subsystems (System $1 \&$ System 2).

The state ψ of the two-particle composite system is the "singlet state," which can be written as

$$
\psi=\frac{1}{\sqrt{2}}\left[\phi_{1}^{+}(\alpha) \otimes \phi_{2}^{-}(\alpha)\right]-\frac{1}{\sqrt{2}}\left[\phi_{1}^{-}(\alpha) \otimes \phi_{2}^{+}(\alpha)\right]
$$

where α may be any direction (including x, y, or z) and where

$$
\sigma_{\alpha}^{1}=\text { the spin component in direction } \alpha \text { on System } 1=\left\{\begin{array}{l}
+1 \text { in state } \phi_{1}^{+}(\alpha) \\
-1 \text { in state } \phi_{1}^{-}(\alpha)
\end{array} \quad\right. \text { and }
$$

$\sigma_{\alpha}^{2}=$ the spin component in direction α on System $2=\left\{\begin{array}{l}+1 \text { in state } \dot{\phi}_{2}^{+}(\alpha) \\ -1 \text { in state } \phi_{2}^{-}(\alpha)\end{array}\right.$.

In state ψ the total spin in any direction is zero; i.e., if the spin is found to be "up" $(+1)$ in direction α on one system it will be "down" (-1) in direction α on the other system, and vice versa. (Put otherwise, the product of the spin components on the separate systems in the same direction is always -1.) Suppose we make a measurement of σ_{x}^{1} on System 1 and (simultaneously) of σ_{y}^{2} on System 2, finding, respectively, values \mathbf{a} and \mathbf{b}. We can then cross-infer the values for σ_{x}^{2} and for σ_{y}^{1}, to get the results as follows.

Observables: $\sigma_{\mathrm{x}}^{1}, \sigma_{\mathrm{y}}^{2}, \sigma_{\mathrm{x}}^{2}, \sigma_{\mathrm{y}}^{1}$
Values: $\quad \mathbf{a}, \quad \mathbf{b}, \quad \mathbf{- a}, \quad \mathbf{- b}$

Since the only possible values for \mathbf{a} and \mathbf{b} are ± 1, if we multiply them together the product (ab) will also be ± 1, and its square $(\mathbf{a b})^{2}=1$. So we have that

$$
\begin{aligned}
\operatorname{val}\left[\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{2}\right)\left(\sigma_{\mathrm{y}}^{1} \cdot \sigma_{\mathrm{x}}^{2}\right)\right] & =\operatorname{val}\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{2}\right) \cdot \operatorname{val}\left(\sigma_{\mathrm{y}}^{1} \cdot \sigma_{\mathrm{x}}^{2}\right) \\
& =\operatorname{val}\left(\sigma_{\mathrm{x}}^{1}\right) \cdot \operatorname{val}\left(\sigma_{\mathrm{y}}^{2}\right) \cdot \operatorname{val}\left(\sigma_{\mathrm{y}}^{1}\right) \cdot \operatorname{val}\left(\sigma_{\mathrm{x}}^{2}\right) \\
& =\mathbf{a} \cdot \mathbf{b} \cdot(-\mathbf{b}) \cdot(-\mathbf{a}) \\
& =(\mathbf{a b})^{2} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\operatorname{val}\left[\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{2}\right)\left(\sigma_{\mathrm{y}}^{1} \cdot \sigma_{\mathrm{x}}^{2}\right)\right]=1 \tag{*}
\end{equation*}
$$

However, by using standard relationships between the various spin operators we can calculate the value of the product $\left[\left(\sigma_{x}^{1} \cdot \sigma_{y}^{2}\right)\left(\sigma_{y}^{1} \cdot \sigma_{x}^{2}\right)\right]$ in a second way. First of all, the spin operators in orthogonal directions (like "x" and "y" above) on a single system (say, System 2) anti-commute; that is,

$$
\left(\sigma_{\mathrm{x}}^{2} \cdot \sigma_{\mathrm{y}}^{2}\right)=-\left(\sigma_{\mathrm{y}}^{2} \cdot \sigma_{\mathrm{x}}^{2}\right)
$$

Also, spin in the z -direction is related to spin in the x - and y -directions by the equations

$$
\begin{aligned}
& \sigma_{z}^{1}=\mathbf{i}\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{1}\right) \\
& \sigma_{\mathrm{z}}^{2}=\mathbf{i}\left(\sigma_{\mathrm{x}}^{2} \cdot \sigma_{\mathrm{y}}^{2}\right)
\end{aligned}
$$

where $\mathbf{i}^{2}=-1$. Using $\left(\sigma_{\mathrm{x}}^{2} \cdot \sigma_{\mathrm{y}}^{2}\right)=-\left(\sigma_{\mathrm{y}}^{2} \cdot \sigma_{\mathrm{x}}^{2}\right)$ we can rewrite the expression for σ_{z}^{2},

$$
\sigma_{\mathrm{z}}^{2}=-\mathbf{i}\left(\sigma_{\mathrm{y}}^{2} \cdot \sigma_{\mathrm{x}}^{2}\right) .
$$

Using the fact that $\left(\sigma_{y}^{1} \cdot \sigma_{y}^{2}\right)=\left(\sigma_{y}^{2} \cdot \sigma_{y}^{1}\right)$ we can readily calculate $\left(\sigma_{z}^{1} \cdot \sigma_{z}^{2}\right)$ from the above relations as follows.

$$
\left(\sigma_{\mathrm{z}}^{1} \cdot \sigma_{\mathrm{z}}^{2}\right)=\mathbf{i}\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{1}\right) \cdot(-\mathbf{i})\left(\sigma_{\mathrm{y}}^{2} \cdot \sigma_{\mathrm{x}}^{2}\right)=-\left(\mathbf{i}^{2}\right)\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{1}\right)\left(\sigma_{\mathrm{y}}^{2} \cdot \sigma_{\mathrm{x}}^{2}\right)=\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{2}\right)\left(\sigma_{\mathrm{y}}^{1} \cdot \sigma_{\mathrm{x}}^{2}\right)
$$

Thus, reading from far left to far right,

$$
\operatorname{val}\left(\sigma_{\mathrm{z}}^{1} \cdot \sigma_{\mathrm{z}}^{2}\right)=\operatorname{val}\left[\left(\sigma_{\mathrm{x}}^{1} \cdot \sigma_{\mathrm{y}}^{2}\right)\left(\sigma_{\mathrm{y}}^{1} \cdot \sigma_{\mathrm{x}}^{2}\right)\right]
$$

According to $(*)$, the RHS $=+1$.
Now we know that for direction z , like any other, the spin values on the two systems are opposite to one another; i.e., that

$$
\begin{equation*}
\operatorname{val}\left(\sigma_{\mathrm{z}}^{1} \cdot \sigma_{\mathrm{z}}^{2}\right)=\operatorname{val}\left(\sigma_{\mathrm{z}}^{1}\right) \cdot \operatorname{val}\left(\sigma_{\mathrm{z}}^{2}\right)=-1 \tag{**}
\end{equation*}
$$

(Indeed, the singlet state ψ is an eigenstate of $\left(\sigma_{\mathrm{z}}^{1} \cdot \sigma_{\mathrm{z}}^{2}\right)$ with eigenvalue -1 , so the only possible value for $\left(\sigma_{\mathrm{Z}}^{1} \cdot \sigma_{\mathrm{Z}}^{2}\right)$ is -1 .)

So from $\left({ }^{* *}\right)$ the LHS of the boxed equation $=-1$. Since $-1 \neq 1(!)$, it follows that we cannot consistently assign values as above.

An examination of the calculations shows that the principles we used to assign values are just these:

1) The only possible values for an observable A of a system in a state ψ are the eigenvalues of A that have non-zero probability in ψ. (EIGENVALUE PRINCIPLE)
2) If A and B commute, then $\operatorname{val}(\mathrm{A} \cdot \mathrm{B})=\operatorname{val}(\mathrm{A}) \cdot v a l(\mathrm{~B}) . \quad$ (PRODUCT RULE)

Thus we have established the following "no-go" ("Dass geht nicht.") theorem. THEOREM:

There is no assignment of exact values to the quantum observables that Satisfies the Eigenvalue Principle and the Product Rule.

REFERENCES

Fine, A. and P. Teller. 1978. Algebraic constraints on hidden variables. Foundations of Physics 8: 629-36.
Bell, J. On the problem of hidden variables in quantum mechanics. 1966. Review of Modern Physics 38: 447.
Kochen, S and E. Specker. 1967. The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17: 59.
Peres, A. Incompatible results of quantum measurements. 1990. Physics Letters A 151: 107-8.

