Physics 115
 General Physics II

Session 2

Fluid statics: density and pressure

- R. J. Wilkes
B. Pascal, 1623-1662
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule (up to exam 1)

Date	Day	Lect.	Topic	readings in Walker
31-Mar	Mon.		intioduction, Fiteview	
1-Apr	Tues	2	Density \& Pressure	15.1-15.3
3-Apr	Thurs	3	Static Fiuluis, Duoyancy	15.4-15.5
4-Apr	Fri	4	Fluid Flow, Bernoulli	15.6-15.8
7-Apr	Mon	5	Viscosity, Flow, Capillaries	15.9
8-Apr	Tues	6	Temperature, expansion	16.1-16.3
10-Apr	Thurs	7	Heat, Conduction	16.4-16.6
11-Apr	Fri	8	Ideal gas	17.1-17.2
14-Apr	Mon	9	Heat, Evaporation	17.4-17.5
15-Apr	Tues	10	Phase change	17.6
17-Apr	Thurs	11	First Law Thermodynamics	18.1 -18.3
18-Apr			EXAM 1 Ch 15,16,17	

Just joined the class? See course home page courses.washington.edu/phy115a/
for course info, and slides from previous sessions

[^0]Physics 115A

Announcements

- You must log in to WebAssign to get your name onto the class roster for grades
- Done automatically when you first log in, no other action required
- BTW, you get 10 tries on each HW item
- Clicker registration is now open - Follow link on course home page: https://catalyst.uw.edu/webq/survey/wilkes/231214
REQUIRED to let us connect your name to your clicker responses, and to create a personal screen name
Other items:
- Recommended weekly reading: NY Times Tuesdays: Science Section
- Recommended weekly viewing: Neil deGrasse Tyson's Cosmos www.globaltv.com/cosmos/episodeguide/
- 115A sessions are recorded on Tegrity

Go to uw.tegrity.com

Using HiTT clickers

- Older model TX3100
- New model TX3200
- We'll use them in class next time
- Required to enter answers in quizzes
- Be sure to get radio (RF), not infrared (IR)

1. Set your clicker to radio channel \#01 for this room
2. Find and write down its serial number
3. Register your clicker (connects your name to the clicker serial number)

- Go to 115A class home page and click on "CLICKER PROGRAMMING: how to program (and reprogram) and register your clicker" for details on programming and registration

Topics for this week

\checkmark Fluids overview
\checkmark Density

- Pressure
- Static equilibrium in fluids
- Pressure vs depth
- Archimedes' Principle and buoyancy
- Continuity and fluid flow
- Bernoulli's equation

Read each day's assigned text sections before class

Last time:

(revised for clarity)

- Pressure gauges usually read P relative to atmospheric pressure:

$$
P_{g}=P-P_{a t m}
$$

- Example: Tire gauge reads $35 \mathrm{lb} / \mathrm{in}^{2}$

What is the "absolute" pressure of air in the tire?
$101.325 \mathrm{kPa}=14.70 \mathrm{lb} / \mathrm{in}^{2}($ psi $) \longrightarrow$ Use this fact to convert units 35 psig $=35$ psi $\left(\frac{101.325 \mathrm{kPa}}{14.7 p s i}\right) \stackrel{2}{=} 241.25 \mathrm{kPa}=P_{g}=P-P_{A T M}$
$P=P_{g}+P_{A T M}=101.325 \mathrm{kPa}+241.25 \mathrm{kPa}=342.575 \mathrm{kPa}$
$P=342.575 \mathrm{kPa}\left(\frac{14.70 \mathrm{psi}}{101.325 \mathrm{kPa}}\right)=49.7$ psia $\begin{aligned} & \text { Gauge pressure }=\text { " } \mathrm{psig"} \\ & \text { Absolute pressure }=\text { "psia" }\end{aligned}$

Fluid pressure

- Fluids exert pressure on all submerged surfaces
- Force always acts perpendicular to surface
- Otherwise, fluid would just flow!
- Atmospheric pressure is equal on all sides of a (small) object
- If pressure inside an object is lowered, or external pressure is too great, fluid pressure may crush it
- Examples: apply vacuum pump to a metal can
- Styrofoam wig form submerged to 900 m depth in ocean:

Standard oceanography student game: attach styrofoam to equipment being lowered to great depth: water pressure crushes it uniformly, so it retains shape
http://www.mesa.edu.au/deep_sea/images/styrofoamhead.jpg

Pressure vs depth

- Force on a surface of area A at depth $\mathrm{h}=$ weight of fluid above:

$$
F_{g}=m g=(\rho V) g=\rho A h g
$$

- But we must take into account atmospheric pressure also!
- Force $=$ pressure*area, so $P A-P_{0} A=(\rho A h g)$
$P_{0}=$ pressure of atmosphere at fluid surface

$$
P=P_{0}+\rho g h(\text { assuming } \rho \text { is constant })
$$

In general, pressure at location 2 which is h deeper than location 1 is:

$$
P_{2}=P_{1}+\rho g h
$$

Example: diving

How far below the surface of a freshwater lake is a diver, if the pressure there is 2.0 atm ?
(Recall: The pressure at the surface is 1.0 atm .)

$$
P=P_{0}+\rho g \Delta h
$$

$$
\begin{aligned}
\Delta h & =\frac{P-P_{0}}{\rho g} \\
& =\frac{[(2.0 \mathrm{~atm})-(1.0 \mathrm{~atm})] 101 \mathrm{kPa} / \mathrm{atm}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(9.81 \mathrm{~N} / \mathrm{kg})} \\
& =10.33 \mathrm{~m}
\end{aligned}
$$

Underwater cave example

- Compare pressures at points 1 and 2 (depth difference h) and 3 (same depth as 2):

$P_{3}=P_{1}+\rho g \Delta h$

so $\quad P_{2}=P_{1}+\rho g \Delta h \quad$ also

Empty box underwater

- An empty box 1 m on each side is located with its top 10 m under the surface of a freshwater lake.
- What is the (gauge) pressure on its top side?
- "gauge" - so, subtract the atmospheric pressure and consider only pressure due to the water column

$$
\begin{aligned}
& P_{T O P}=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~m})=98 \mathrm{kPa} \\
& \text { - Q: why use gauge - when would absolute be useful? }
\end{aligned}
$$

- What is the gauge pressure on its bottom side?

$$
P_{\text {ВОТТОМ }}=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(11 \mathrm{~m})=107.8 \mathrm{kPa}
$$

- Notice we measure h downward from the surface
- What does the 10 kPa pressure difference between top and bottom imply...?

Barometers (atmospheric pressure measurement)

- Toricelli's barometer (c. 1640)
- Fill long glass tube, 1 end closed, with mercury (Hg)

- Invert it and put open end in a dish of Hg
- Empty space at top is "vacuum" : P~0
(actually: Hg vapor, but negligible pressure)
$P_{\text {bottom }}-P_{\mathrm{at}}=(0+\rho g h)-P_{\mathrm{at}} \rightarrow P_{\mathrm{at}}=\rho g h$
- Atmospheric pressure on the dish supports a column of Hg of height h
- Column is at rest so pressures at bottom must balance:

$$
\begin{aligned}
P_{A T M} & =\rho_{H g} g h \\
h & =P_{A T M} / \rho_{H g} g \\
& =(101.3 \mathrm{kPa}) /\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(13600 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& =0.760 \mathrm{~m}
\end{aligned}
$$

Manometers (fluid pressure gauges)

- Use a U-tube filled with fluid (Hg, water, etc) to measure pressure
- Height difference between sides indicates pressure P

Deep thought

- U-tube filled with fluid : we "naturally" expect sides to be equal in height
- We just saw this can be explained in terms of equalized P
- We can also think in terms of energy

To get unequal levels, we'd have to raise some mass of fluid: do work on it to increase its potential E

So: Equal levels represent the minimum energy arrangement for the system

Pascal's Vases: paradox?

The water level in each section is the same, independent of shape.

But P is the same for all - no flow! We say this must be so because h is the same at the bottom of each section

Q: What supports the extra water volume in the flared shapes?

Hydrostatic paradox resolved: apply phys 114

- Forces exerted by the sides of the cone are perpendicular to the walls (pressure direction)
- Vertical components support the water above the sides
- Only the column of water directly above the bottom opening contributes to pressure at the base of the cone - glass structure supports the rest

Pascal's Principle (1646)

- Pressure at depth h in container

$$
P=P_{0}+\rho g h
$$

- $P_{0}=$ atmospheric pressure
- Increase P_{0} by P_{1} :

$$
P^{\prime}=\left(P_{0}+\rho g h\right)+P_{1}
$$

- So P anywhere in fluid is increased by P_{1}
"External pressure applied to an enclosed fluid is transmitted to every point in the fluid"
- Blaise Pascal's demonstration:
- Put a 10 m pipe into closed full barrel
- Insert a narrow pipe, fill with water
- Barrel bursts!

Applying Pascal's principle: hydraulic lift

The large piston of a hydraulic lift has a radius of 20 cm .

What force must be applied to the small piston of radius 2.0 cm to raise a car of mass $1,500 \mathrm{~kg}$?
(weight $=m g=14,700 \mathrm{~N}$)
$P A_{2}=m g$ so $P=\frac{m g}{A_{2}}$

$=(1500 \mathrm{~kg})(9.81 \mathrm{~N} / \mathrm{kg})(2.0 \mathrm{~cm} / 20 \mathrm{~cm})^{2}$
$=147 \mathrm{~N} \quad \mathrm{~F}_{2}=100 \mathrm{~F}_{1}$

[^0]: 4/1/14

