Physics 115A General Physics II

Session 4

Fluid flow Bernoulli's equation

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

4/4/14

Physics 115

Lecture Schedule (up to exam 1)

	Date	Day	Lect.	Торіс	readings in Walker
	31-Mar	Mon	1	Introduction, Preview	
	1-Apr	Tues	2	Density & Pressure	15.1-15.3
	3-Apr	Thurs	g	Static Fluids, Buoyancy	15.4-15.5
<	4-Apr	Fri	4	Fluid Flow, Bernoulli	15.6-15.8
	7-Apr	Non	5	Viscosity, Flow, Capillarics	15.9
	8-Apr	Tues	6	Temperature, expansion	16.1-16.3
	10-Apr	Thurs	7	Heat, Conduction	16.4-16.6
	11-Apr	Fri	8	Ideal gas	17.1-17.2
	14-Apr	Mon	9	Heat, Evaporation	17.4-17.5
	15-Apr	Tues	10	Phase change	17.6
	17-Apr	Thurs	11	First Law Thermodynamics	18.1-18.3
	18-Apr	Fri		EXAM 1 Ch 15,16,17	
Ju	Just joined the class? See course home page courses.washington.edu/phy115a/				

for course info, and slides from previous sessions

4/4/14

Physics 115A

Example: Flotation

- A "string" of undersea oceanographic instruments is held down by an anchor, and pulled upright by a hollow steel sphere float. instruments
 - The float displaces 1 m³ of seawater
 - It weighs 1000N when in airWhat upward force can it supply to hold up the string?

B

$$F_{\rm g} = m_{\rm STEEL}g = 1000N$$
 Ocean floor

$$B = \rho_{\text{SEAWATER}} g V_{FLOAT} = (1023kg / m^3) (9.8m / s^2) (1m^3) = 10,025N$$

Net upward force on sphere when free: = $B - F_g = 9,025 \text{ N}$ This is the max weight of instruments it can 'lift'

4/4/14

float

anchor K

Combine several ideas: "Cartesian diver" demo

Demonstrates: Archimedes principle, Pascal's Law, gas law (next week)

- You can do this at home with a plastic soda bottle and a small packet of soy sauce or ketchup
- "Diver" has some air in it, and just barely floats (*neutral buoyancy*)
 - Squeeze the bottle: increase P in water, *compress* air bubble
 - Compression \rightarrow smaller V \rightarrow *higher density* for diver: sinks
 - Release: reduced pressure \rightarrow

bubble re-expands \rightarrow lower density: floats again (Toy said to have been invented by Descartes)

Rene Descartes, 1596-1650

For how-to instructions, see http://www.stevespanglerscience.com/lab/experiments/cartesian-diver-ketchup

4/4/14

Fluids in motion: continuity equation $\frac{v_1}{v_2}$

(a)

 Δm_2

 $v_2 \Delta t$

- Area A_2

 ρ_2

Incompressible fluid flows in a pipe that gets narrower. What happens?

Conservation of **matter**: mass going into pipe must = mass going out Mass passing point 1 in time Δt : $\Delta m_1 = \rho_1 \Delta V_1 = \rho_1 A_1 v_1 \Delta t$

Mass passing point 2 in time Δt : $\Delta m_2 = \rho_2 A_2 v_2 \Delta t$

 Δm_1

 $\overline{v_1 \Delta t}$

 ρ_1

Fluid cannot disappear, or be compressed, so must have $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$

If density is constant, $\rho_2 = \rho_1 \implies A_1 v_1 = A_2 v_2$

Area A1 -

Laminar flow vs turbulent flow

- As always in physics, we start with the simplest case, and add complications after we solve the easy stuff
- Laminar flow = smooth motion of fluid
 - Paths of particles of fluid (elements of mass Δm) do not cross

Streamlines: lines indicate the laminar flow path. Separation between streamlines correlates with pressure and flow speed (more on this later).

Turbulence – we wont go into...

- Turbulent flow = complex motion of fluid mass elements
 - Paths of water parcels may cross
 - Hard to analyze!
 - Important topic in weather prediction, oceanography, etc
 - Example of *chaotic behavior*
 - parcels of water that start out next to each other have unpredictable locations farther downstream
 - We have equations describing motion, but they cannot be solved uniquely in most cases
 - Chaos theory (mathematical toolkit) helps...

Bernoulli's equation: energy considerations in flow

- Apply conservation of energy to fluid flow
 - Suppose fluid speed changes (as usual: incompressible)
 - We know that $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$
 - Consider a "parcel" of fluid ΔV : length Δx , area A
 - If speed changes, a force must have acted: pressure x area

(1700 - 1782)

Bernoulli's equation: changing speed

- F_1 = force due to pressure on parcel of fluid ΔV when at location 1, from fluid **behind** it $F_1 = P_1 A_1 \quad \Delta V_1 = \Delta x_1 A_1$
- F_2 = force due to pressure on same parcel of fluid ΔV when at location 2, from fluid **ahead** of it $F_2 = P_2 A_2 \quad \Delta V_2 = \Delta x_2 A_2$
- Work done by forces: $\Delta W_1 = F_1 \Delta x_1 = P_1 A_1 \Delta x_1 = P_1 \Delta V_1$

$$\Delta W_2 = -F_2 \Delta x_2 = -P_2 \Delta V_2 \qquad \text{(F}_2 \text{ points backward)}$$

• Incompressible:
$$\Delta V_1 = \Delta V_2 = \Delta V$$

• Net work is thus $\Delta W = \Delta W_1 + \Delta W_2 = P_1 \Delta V - P_2 \Delta V = (P_1 - P_2) \Delta V$

• Net WORK = Change in KE of parcel

$$\Delta W = K_2 - K_1, \text{ where } K_i = \frac{1}{2} \Delta m v_i^2 = \frac{1}{2} \rho \Delta V v_i^2$$

$$\Delta W = \Delta K \rightarrow (P_1 - P_2) \Delta V = (\frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2) \Delta V$$
So $P_2 + \frac{1}{2} \rho v_2^2 = P_1 + \frac{1}{2} \rho v_1^2$ or $P + \frac{1}{2} \rho v^2 = \text{constant}$

The Bernoulli Equation (part of it...)

4/4/14

Pressure/speed of flow

- The part of Bernoulli's eq'n we did so far tells us that pressure must drop ($P_2 < P_1$) when speed increases
 - Makes sense: P₁ pushes fluid forward, P₂ pushes backward!
- Example: Hose nozzle: circular cross-section, diameter reduced ¹/₂

P₂ = 110 kPa (water)
d₁ = 2 d₂
$$\rightarrow$$
 A₁ = 4A₂
If v₂ = 25 m/s,
what is P₁ and v₁?
Continuity eqn says: $\rho A_1 v_1 = \rho A_2 v_2 \rightarrow v_1 = \frac{A_2}{A_1} v_2 = \frac{(25m/s)}{4} = 12.5m/s$
Bernoulli: $P_2 + \frac{1}{2}\rho v_2^2 = P_1 + \frac{1}{2}\rho v_1^2 \rightarrow P_1 = P_2 + \frac{1}{2}\rho (v_2^2 - v_1^2)$
 $P_1 = (110kPa) + \frac{1}{2}(1000kg/m^3)([25m/s]^2 - [6.25m/s]^2)$
 $= 110kPa + (500kg/m^3)(586m^2/s^2) = 403kPa$
4/4/14
Physics 115

Another part of Bernoulli's eqn: changing height

- Suppose the pipe changes height but not diameter:
 - The gravitational PE of the fluid changes
 - Raising the fluid: pressure forces have to do work on the parcel of fluid
 - Or: gravity does negative work on it (falling)
 - Work done raising a mass distance y = -mgy

$$\Delta W_{GRAV} = -mg(y_2 - y_1) = -\rho \Delta V g(y_2 - y_1)$$

 Total work done on parcel = W done by gravity + W by forces (pressure difference)

If pipe area A does not change,

v = constant, so no change in KE

$$\Delta W_{TOTAL} = \Delta W_{GRAV} + \Delta W_{FORCES} = \Delta K = 0$$
$$\left(P_1 - P_2\right)\Delta V - \rho\Delta V g(y_2 - y_1) = 0$$

$$P_2 + \rho g y_2 = P_1 + \rho g y_1$$
 or
 $P + \rho g y = \text{constant}$

4/4/14

Doing The Full Bernoulli

- We can combine both pieces: The Bernoulli Equation
 - Pressure vs speed
 - Pressure vs height

$$P_{2} + \rho g h_{2} + \frac{1}{2} \rho v_{2}^{2} = P_{1} + \rho g h_{1} + \frac{1}{2} \rho v_{1}^{2}$$

or $P + \rho g h + \frac{1}{2} \rho v^{2} = \text{constant}$

This turns out to be conservation of total energy

- Garden hose connected to raised narrower hose
 A₁ = 2 A₂ (so what is ratio of diameters?)
 Δy = h = 20 cm, v₁ = 1.2 m/s, P₁ = 143kPa , fluid is fresh water
 Find P and v at location 2
 - − Use continuity eqn to get v₂ : A₁v₁ = A₂v₂ → v₂ = A₁v₁/A₂ = 2v₁ = 2.4m / s
 − Use Bernoulli to relate P's :

13

$$P_{1} + \rho g h_{1} + \frac{1}{2} \rho v_{1}^{2} = P_{2} + \rho g h_{2} + \frac{1}{2} \rho v_{2}^{2} \rightarrow P_{2} = P_{1} + \rho g \left(h_{1} - h_{2} \right) + \frac{1}{2} \rho \left(v_{1}^{2} - v_{2}^{2} \right)$$

$$P_{2} = 143 kPa + \left(1000 kg / m^{3} \right) \left[9.8m / s^{2} \left(-0.2m \right) + \frac{1}{2} \left(\left\{ 1.2m / s \right\}^{2} - \left\{ 2.4m / s \right\}^{2} \right) \right]$$

$$= 143 kPa + \left(-1,960 Pa - 2,160 Pa \right) = 138.9 kPa$$

$$4/4/14$$
Physics 115

Torricelli's Law

A large tank of water, open at the top, has a small hole through its side a distance h below the surface of the water.

Find the speed of the water as it flows out the hole. $V_a = 0$ $P_a = P_b = P_{at}$

(P at surface, and <u>outside</u> the hole)

$$P_{a} + \rho g h_{a} + 0 = P_{b} + \rho g h_{b} + \frac{1}{2} \rho v_{b}^{2}$$

$$\rho g \Delta h = \frac{1}{2} \rho v_b^2 \qquad v_b = \sqrt{2g\Delta h}$$

Torricelli's Law:

Speed of water jet at depth h is same as speed of object dropped from height h

Evangelista Torricelli (1608 - 1647)

