Physics 115 General Physics II

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

1

Lecture Schedule (up to exam 1)

Date	Day	Lect.	Торіс	readings in Walker
31-Mar	Mon	1	Introduction, Preview	
1-Apr	Tues	2	Density & Pressure	15.1-15.3
3-Apr	Thurs	3	Static Fluids, Buoyancy	15.4-15.5
4-Apr	Fri	4	Fluid Flow, Bernoulli	15.6-15.8
7-Apr	Mon	5	viscosity, Flow, Capiliaries	15.9
8-Apr	Tues	6	Temperature, expansion	16.1-16.3
10-Apr	Thurs	7	Heat, Conduction	16.4-16.6
11-Apr	Fri	8	Ideal gas	17.1-17.2
14-Apr	Mon	9	Heat, Evaporation	17.4-17.5
15-Apr	Tues	10	Phase change	17.6
17-Apr	Thurs	11	First Law Thermodynamics	18.1-18.3
18-Apr	Fri		EXAM 1 Ch 15,16,17	

Check the course home page courses.washington.edu/phy115a/ for possible updates once per week.

Today

4/8/14

Physics 115

Announcements

- Homework 1 is due tomorrow night (Weds 11:59pm)
- Clicker quiz results will be posted on Friday
 - Check to make sure your clicker is being recorded
 - Roster was updated yesterday
- Early warning: Exam 1 is one week from Friday (4/18)
 - Covers all material discussed in class from chapters 15, 16, 17
 - Formula sheet will be provided
 - Simple calculator is all you need
 - No use of phones, laptops, pads allowed during exam
- Volunteers wanted to take exam at 2:30 instead of 1:30
 - We'd like to balance numbers between sections A/B, for exams
 - If you want to take the exam later, with section B, please go to https://catalyst.uw.edu/quickpoll/vote/wilkes/8858
 - First 38 volunteers will be accepted

Example: partially blocked artery

- Blood flows through an artery whose diameter is reduced by 15% by a blockage, but volume flow rate of blood through the artery remains the same
 - By what factor has △P across the length of this artery changed? (pressure drop increased)
 - "by what factor?" \rightarrow ratio of blocked to unblocked
 - Must take into account viscosity of blood: use Poiseulle's eqn

Temperature and Heat

• Heat = energy transferred between bodies due to a difference in temperature

(Heat transfer = thermodynamics)

- Bodies are in thermal equilibrium if no heat transfer occurs
 - Thermal equilibrium \rightarrow No temperature difference

The "Zeroth" Law of Thermodynamics: If two objects are in thermal equilibrium with a third object, then all three of the objects are in thermal equilibrium with each other.

(a)

Two bodies are defined to be at the same temperature if they are in thermal equilibrium.

Temperature scales

- Celsius scale science, and everywhere but USA
- Fahrenheit scale USA
- Water Ice point
 - = normal freezing point of water

 $= 0^{\circ}C = 32^{\circ}F.$

Steam point

- = boiling point of water at P=1 atm
- = 100°C = 212°F.

$$\Delta t = t_s - t_i = 100^{\circ}C = 180^{\circ}F \text{ so } \frac{\Delta t(C)}{\Delta t(F)} = \frac{100}{180} = \frac{5}{9}$$

$$t_c = \frac{5}{9}(t_F - 32^{\circ}F) \text{ and } t_F = \frac{9}{5}t_c + 32^{\circ}F$$

$$40^{\circ}C$$

Note that the readings match when $t = -40^{\circ}F = -40^{\circ}C$, so:

$$t_C = \frac{5}{9} (t_F + 40^{\circ}F) - 40^{\circ}C$$
 and $t_F = \frac{9}{5} (t_C + 40^{\circ}C) - 40^{\circ}F$

4/8/14

Converting Fahrenheit & Celsius Temperatures

The temperature in Marrakech is measured with a Celsius thermometer to be 40°C. An American tourist asks "What is that in Fahrenheit?"

$$T_{F} = \frac{9}{5}T_{C} + 32^{\circ}F$$

= $\frac{9}{5}(40^{\circ}C) + 32^{\circ}F$
= $72^{\circ}F + 32^{\circ}F = 104^{\circ}F$

The thermometer in a grocery store beer cooler reads 40 °F. A European tourist asks "what is that in Celsius?"

$$T_C = \frac{5}{9} \left(T_F - 32^{\circ}F \right) = \frac{5}{9} \left(8^{\circ}F \right) = 4.4^{\circ}C$$

Lowest limit on T

- Experiments show there is a lower limit to temperature
 - We will see: T measures molecular speeds, eventually v=0 !
 - We find: P in a given volume of gas is proportional to its T
- Measure P of a constant volume of gas as it is cooled:
 - Result: all kinds of gases tend toward P=0 at same T: -273 °C

How can we measure P for a constant volume of gas?

- Use a U-tube manometer
- As P gets smaller, adjust amount of fluid so that left side is always same height

Kelvin temperature scale: $T_K = T_C + 273.15^{\circ}C$

Absolute zero = $-273.15 \circ C = 0 \text{ K}$ (zero kelvins)

1 K (kelvin) has same size as 1°C, just shifted origin of scale

Gas 1

Gas 2

Gas 3

 $T_{\rm C}$

Quiz 3

- Two objects in physical contact with each other are in thermal equilibrium. Then
 - A. No heat is being transferred between them
 - B. They have the same temperature
 - C. Both A and B are true
 - D. Neither A or B is true

Thermal expansion

- Most materials expand when heated
 - Basis of simple liquid thermometers
 - Approximately linear with T $\Delta L \propto \Delta T \rightarrow \Delta L = (const)\Delta T = \alpha L_0 \Delta T$
 - L_0 = original length of object
 - Coefficient of linear expansion α : units = 1/°C (or 1/K)

TABLE 16-1	Coefficients of Thermal
	Expansion near 20 °C

Substance	Coefficient of linear expansion, $\alpha(\kappa^{-1})$
Lead	$29 imes10^{-6}$
Aluminum	$24 imes 10^{-6}$
Brass	19×10^{-6}
Copper	17×10^{-6}
Iron (steel)	12×10^{-6}
Concrete	12×10^{-6}
Window glass	11×10^{-6}
Pyrex glass	3.3×10^{-6}
Quartz	0.50×10^{-6}
Zuuru	0100 1 10
Substance	Coefficient of volume expansion, $\beta(\kappa^{-1})$
Substance Ether	Coefficient of volume expansion, $\beta(K^{-1})$ 1.51×10^{-3}
Substance Ether Carbon tetrachloride	Coefficient of volume expansion, $\beta(K^{-1})$ 1.51×10^{-3} 1.18×10^{-3}
Substance Ether Carbon tetrachloride Alcohol	Coefficient of volume expansion, $\beta(K^{-1})$ 1.51×10^{-3} 1.18×10^{-3} 1.01×10^{-3}
Substance Ether Carbon tetrachloride Alcohol Gasoline	Coefficient of volume expansion, $\beta(\kappa^{-1})$ 1.51×10^{-3} 1.18×10^{-3} 1.01×10^{-3} 0.95×10^{-3}
Substance Ether Carbon tetrachloride Alcohol Gasoline Olive oil	Coefficient of volume expansion, $\beta(\kappa^{-1})$ 1.51×10^{-3} 1.18×10^{-3} 1.01×10^{-3} 0.95×10^{-3} 0.68×10^{-3}
Substance Ether Carbon tetrachloride Alcohol Gasoline Olive oil Water	Coefficient of volume expansion, $\beta(K^{-1})$ 1.51×10^{-3} 1.18×10^{-3} 1.01×10^{-3} 0.95×10^{-3} 0.68×10^{-3} 0.21×10^{-3}

Copyright © 2007 Pearson Prentice Hall, Inc.

Linear expansion example: bimetallic strips

- Used in old thermostats and mechanical thermometers
 - Silicon chips are used for this now...
 - Two strips of metals with different α 's
 - Same length at some reference T
 - Increase or decrease T:
 One gets longer than the other: bends

2-Dimensional expansion

- Linear expansion \rightarrow expansion of area, or volume
 - Area expansion = linear expansion in 2 dimensions

$$A' = (L + \Delta L)^{2} = (L_{0} + \alpha L_{0} \Delta T)^{2} = L_{0}^{2} + 2\alpha L_{0}^{2} \Delta T + \alpha^{2} L_{0}^{2} \Delta T^{2}$$

for $\alpha \Delta T \ll 1$, $\alpha^{2} \Delta T^{2} \approx 0 \rightarrow A' \approx L_{0}^{2} + 2\alpha L_{0}^{2} \Delta T = A + 2\alpha A \Delta T$
 $\Delta A = A' - A = 2\alpha A \Delta T$

Notice: not proportional to α^2 , but 2α

– Volume expansion: same idea, now we get factor 3α

$$V' = (L + \Delta L)^{3} = (L_{0} + \alpha L_{0} \Delta T)^{3}$$

for $\alpha \Delta T \ll 1$, $\Delta V = V' - V = 3\alpha V \Delta T$

• However, we define a volume coeff of expansion $\boldsymbol{\beta}$:

$$\Delta V = \beta V \Delta T \rightarrow \beta \approx 3\alpha$$