

Molecular motion and temperature Phase equilibrium, evaporation

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule (up to exam 1)

Date	Day	Lect.	Торіс	readings in Walker
31-Mar	Mon	1	Introduction, Preview	
1-Apr	Tues	2	Density & Pressure	15.1-15.3
3-Apr	Thurs	3	Static Fluids, Buoyancy	15.4-15.5
4-Apr	Fri	4	Fluid Flow, Bernoulli	15.6-15.8
7-Apr	Mon	5	Viscosity, Flow, Capillaries	15.9
8-Apr	Tues	6	Temperature, expansion	16.1-16.3
10-Apr	Thurs	7	Heat, Conduction	16.4-16.6
<u> 11-Apr</u>	Fri	ô	ideai gas	17.1-17.2
14-Apr	Mon	9	Heat, Evaporation	17.4-17.5
15-Apr	Tues	10	Phase change	17.6
17-Apr	Thurs	11	First Law Thermodynamics	18.1-18.3
18-Apr	Fri		EXAM 1 Ch 15,16,17	

courses.washington.edu/phy115a/

for course info, and slides from previous sessions

4/14/14

Physics 115

Today

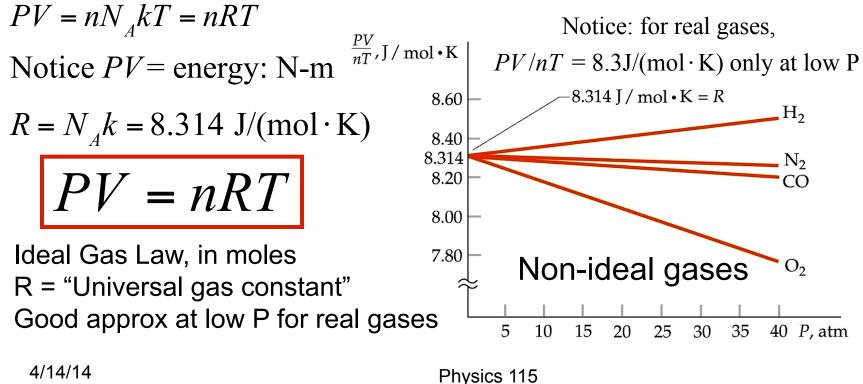
Announcements

- Prof. Jim Reid is standing in for RJW this week
- Exam 1 **this Friday 4/18**, in class, formula sheet provided
 - YOU bring a bubble sheet , pencil, calculator (NO laptops or phones; NO personal notes allowed.)
 - We will post sample questions tomorrow, and go over them in class Thursday
- Clicker responses from last week are posted, so you can check if your clicker is being detected. See link on class home page, http://courses.washington.edu/phy115a

Gas Law: Avogadro's number and R Last time

Counting molecules to get N is difficult, so it is convenient to use Avagadro's number N_A , the number of carbon atoms in exactly 12 g (1 mole) of carbon. 1 mol = {molecular mass, A} grams of gas (For elements, what you see on the Periodic Table is A averaged over isotopes)

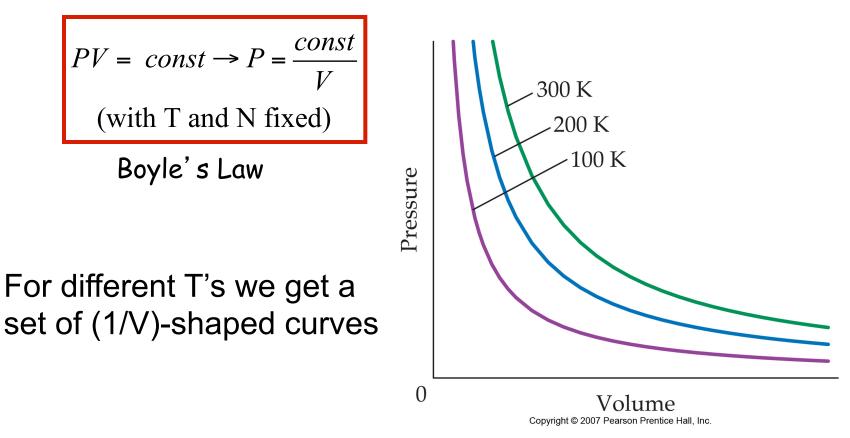
 $N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ molecules/mole and } N = n N_{\rm A}, \text{ where } n = \text{number}$ of moles of gas



4

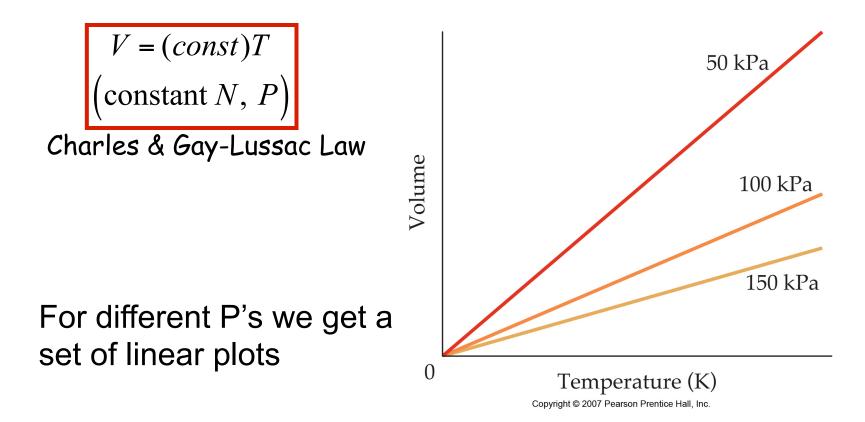
Isotherm plots

- PV=NkT results from many different observations:
 - Hold N, T constant and see how P, V vary: find



Isobar plots

- Hold N, P constant and see how V, T vary: find



Example: Volume of an ideal gas

 What volume is occupied by 1.00 mol of an ideal gas if it is at T = 0.00°C and P = 1.00 atm?

$$PV = nRT$$
 so

$$V = \frac{nRT}{P}$$

= $\frac{(1.00 \text{ mol})[0.08206 \text{ L} \cdot \text{atm}/(\text{mol} \cdot \text{K})](273.15K)}{(1.00 \text{ atm})}$

= 22.41 L

- If we increase the V available, with same T: P must drop
- If we increase the T, with V kept the same: P must rise
- Standard Temperature and Pressure (STP) = 0°C, 1 atm
 - At STP, one mole of any ideal gas occupies 22.4 liters

Example: heating and compressing a gas

- An ideal gas initially has a volume = 2.00 L, temperature = 30.0°C, and pressure =1.00 atm.
- The gas is heated to 60.0°C and compressed to a volume of 1.50 L what is its new pressure?

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \text{ so } P_2 = P_1 \frac{V_1 T_2}{V_2 T_1} = (1.00 \text{ atm}) \frac{(2.0 \text{ L})(60.0^\circ C + 273.15^\circ C)}{(1.5 \text{ L})(30.0^\circ C + 273.15^\circ C)}$$
$$= 1.47 \text{ atm}$$

 Notice: we **must** use Kelvin temperatures when applying ideal gas laws – what would result have been if we use the ratio (60/30)?

Quiz 5

- Two containers with equal V and P each hold samples of the same ideal gas. Container A has twice as many molecules as container B.
- Which is the correct statement about the absolute temperatures in containers A and B, respectively?

A.
$$T_A = T_B$$

B. $T_A = 2 T_B$
C. $T_A = (1/2)T_B$
D. $T_A = (1/4) T_B$
E. $T_A = (1/\sqrt{2})T_B$

Quiz 5

- Two containers with equal V and P each hold samples of the same ideal gas. Container A has twice as many molecules as container B.
- Which is the correct statement about the absolute temperatures in containers A and B, respectively?

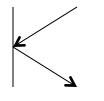
A.
$$T_A = T_B$$

B. $T_A = 2 T_B$
C. $T_A = (1/2)T_B$ $PV = nRT$ so $T = (PV / nR) \propto (1 / n)$
D. $T_A = (1/4) T_B$
E. $T_A = (1/\sqrt{2})T_B$

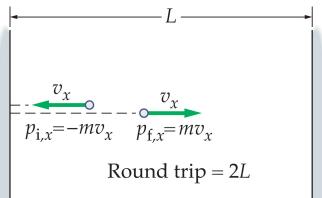
Relating gas laws to molecular motion

- P, V, T are macroscopic quantities
 - Human-scale quantities, measurable on a table-top
- Molecular motion (x, v vs t) = microscopic quantities
- Kinetic theory of gases: connect micro to macro
 - Model for ideal gas
 - N is large, molecules are identical point-particles
 - Molecules move randomly
 - No inelastic interactions: collisions are always elastic
 - Recall: elastic means no loss of KE due to collision

<u>Elastic</u> collision with wall means momentum (so, *v*) component perpendicular to wall gets reversed



Speed unchanged Vertical *v* unchanged Horizontal *v* reversed



Calculate the pressure of a gas

Change in horizontal momentum of molecule

$$\Delta p_x = p_{x,f} - p_{x,i} = mv_x - (-mv_x) = 2mv_x$$

Change is due to force exerted by wall:
 $F\Delta t = \Delta p_x, \quad F_{ON WALL} = -F_{BY WALL}$

$$L$$

$$v_{x}$$

$$p_{i,x} = -mv_{x}$$

$$p_{f,x} = mv_{x}$$
Round trip = 2L

Average force exerted on wall by one molecule $F_{AVG} = \frac{\Delta p_x}{\Delta t}$

where Δt = time between collisions = round-trip time

$$\Delta t = 2L / v_x \rightarrow F_{AVG} = \frac{2mv_x}{2L / v_x} = \frac{mv_x^2}{L}$$

Assume symmetrical container (LxLxL): (doesn't matter in the end)

$$P_{AVG} = \frac{F_{AVG}}{A} = \frac{1}{L^2} \left(\frac{mv_x^2}{L} \right) = \frac{mv_x^2}{V} \rightarrow \text{Adding up all molecules, } PV = Nm \left(v_x^2 \right)_{AVG}$$

Defining temperature (again): molecular scale

• Now we can connect macro to micro:

$$PV = NkT = 2N\left(\frac{1}{2}mv_x^2\right)_{av} \implies \left(\frac{1}{2}mv_x^2\right)_{av} = \frac{1}{2}kT$$

Nothing special about the x-direction: random motion means

$$(v_x^2)_{av} = (v_y^2)_{av} = (v_z^2)_{av}$$
 and $(v^2)_{av} = (v_x^2)_{av} + (v_y^2)_{av} + (v_z^2)_{av} = 3(v_x^2)_{av}$

(because random v components are independent of one another)

The average translational kinetic energy of the molecules is:

$$K_{\text{translational av}} = \left(\frac{1}{2}mv^2\right)_{\text{av}} = \frac{3}{2}kT \text{ per molecule}$$
$$K_{\text{trans}} = N\left(\frac{1}{2}mv^2\right)_{\text{av}} = \frac{3}{2}NkT = \frac{3}{2}nRT$$

Deep and fundamental ! Avg KE of gas molecule is proportional to T, with Boltzmann constant as the factor

Root-mean-square (RMS) - useful avg where quantity-squared is what matters:

$$(v^2)_{av} = \frac{3kT}{m_{molecule}} = \frac{3N_A kT}{N_A m_{molecule}} = \frac{3RT}{M_{MOLE}}$$
 and $v_{RMS} = \sqrt{(v^2)_{av}} = \sqrt{\frac{3RT}{M_{MOLE}}}$

Example: RMS speed of gas molecules

RMS means: take each molecule's speed and square it, then find the average of those numbers, and THEN take the square root.

In practice: we find the statistical speed distribution of the molecules, and use that to estimate RMS speed

Oxygen gas (O₂) has a molar mass* M of about 32.0 g/mol, and hydrogen gas (H2) has a molar mass of about 2.00 g/mol. Assuming ideal-gas behavior, what is:

(a) the RMS speed of an oxygen molecule when the temperature is 300K (27°C), and

(b) RMS speed of a hydrogen molecule at the same temperature

Note: Walker says "molecular mass" for molar mass – confusing. M_X = grams in 1 mole of X, m_X = mass (in kg) of one X molecule

$$v_{O2 \text{ RMS}} = \sqrt{\frac{3RT}{M_o}} = \sqrt{\frac{3(8.314 \text{ J/mol} \cdot \text{K})(300 \text{ K})}{(0.0320 \text{ kg/mol})}} = 485 \text{ m/s}$$

$$v_{H2 \text{ RMS}} = \sqrt{\frac{3RT}{M_o}} = \sqrt{\frac{3(8.314 \text{ J/mol} \cdot \text{K})(300 \text{ K})}{(0.0320 \text{ kg/mol})}} = 1,934 \text{ m/s}$$

 $v_{\rm H2\,RMS} = \sqrt{M_{\rm H}} = \sqrt{(0.0020 \text{ kg/mol})} = 1,$

Probability Distributions

We give a 25 point quiz to N students, and plot the results as a **histogram**, showing the number n_i of students, or fraction $f_i=n_i/N$ of students, for each possible score vs. score, from 0 to 25.

Such plots represent **distributions**.

For reasonably large N, we can use $f_i = n_i/N$ to estimate the probability that a randomly selected student received a score s_i .

Notice, the fractions will add to 1 for all possible scores, so that $\Sigma f_i = 1$. In that case the histogram represents a **normalized distribution function**. We have the following relations:

It's not useful for
class grades, but we
could also calculate
the average squared
score:
$$\sum_{i}^{n} n_{i} = N \qquad \sum_{i}^{n} f_{i} = 1 \qquad s_{av} = \frac{1}{N} \sum_{i}^{n} n_{i} s_{i} = \sum_{i}^{n} f_{i} s_{i}$$
$$s_{av} = \frac{1}{N} \sum_{i}^{n} n_{i} s_{i}^{2} = \sum_{i}^{n} f_{i} s_{i}^{2} \qquad s_{RMS} = \sqrt{s_{av}^{2}} = \sqrt{\sum_{i}^{n} f_{i} s_{i}^{2}}$$

