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•  Home page: http://courses.washington.edu/phy115a/ 



4/14/14 Physics 115 

Today 

Lecture Schedule (up to exam 1) 

2 

Just joined the class? See course home page 
       courses.washington.edu/phy115a/ 
    for course info, and slides from previous sessions 



Announcements 
•  Prof. Jim Reid is standing in for RJW this week 
•  Exam 1 this Friday 4/18, in class, formula sheet 

provided 
–  YOU bring a bubble sheet , pencil, calculator (NO laptops or 

phones; NO personal notes allowed.) 
–  We will post sample questions tomorrow, and go over them in 

class Thursday 

•  Clicker responses from last week are posted, so you can 
check if your clicker is being detected.  See link on class 
home page, http://courses.washington.edu/phy115a 
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Gas Law: Avogadro’s number and R 
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Non-ideal gases 

  Counting molecules to get N is difficult, so it is convenient to use 
Avagadro’s number NA, the number of carbon atoms in exactly 12 g 
(1 mole) of carbon.  1 mol = {molecular mass, A} grams of gas 
(For elements, what you see on the Periodic Table is A averaged over 
isotopes) 
  NA = 6.022 x 1023 molecules/mole and N = nNA, where n = number 
of moles of gas 
PV = nNAkT = nRT
Notice PV= energy: N-m

            Notice: for real gases,
 PV /nT  = 8.3J/(mol ⋅K) only at low P

PV nRT=
Ideal Gas Law, in moles 
R = “Universal gas constant” 
Good approx at low P for real gases 

R = NAk = 8.314 J/(mol ⋅K)

Last time 



Isotherm plots 
•  PV=NkT results from many different observations: 

–  Hold N, T constant and see how P, V vary: find 
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PV =  const→ P = const
V

(with T and N fixed)

Boyle’s Law 

For different T’s we get a 
set of (1/V)-shaped curves 



Isobar plots 
–  Hold N, P constant and see how V, T vary: find 
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V = (const)T
constant N ,  P( )

Charles & Gay-Lussac Law 

For different P’s we get a 
set of linear plots 



Example: Volume of an ideal gas 
•  What volume is occupied by 1.00 mol of an ideal gas if 

it is at T = 0.00°C and P = 1.00 atm? 

–  If we increase the V available, with same T: P must drop 
–  If we increase the T, with V kept the same: P must rise 

•  Standard Temperature and Pressure (STP) = 0°C, 1 atm 
–  At STP, one mole of any ideal gas occupies 22.4 liters  
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  soPV nRT=

[ ](1.00 mol) 0.08206 L atm/(mol K) (273.15 )
(1.00 atm)

22.41 L

nRTV
P

K

=

⋅ ⋅
=

=



Example: heating and compressing a gas 
•  An ideal gas initially has a volume = 2.00 L, 

temperature = 30.0°C, and pressure =1.00 atm. 
•  The gas is heated to 60.0°C and compressed to a 

volume of 1.50 L – what is its new pressure? 

–  Notice: we must use Kelvin temperatures when applying 
ideal gas laws – what would result have been if we use the 
ratio (60/30)? 
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1 1 2 2

1 2

  soPV PV
T T

=
1 2

2 1
2 1

(2.0 L)(60.0 273.15 )(1.00 atm)
(1.5 L)(30.0 273.15 )

1.47 atm

VT C CP P
V T C C

° + °
= =

° + °

=



Quiz 5 
•  Two containers with equal V  and P each hold 

samples of the same ideal gas. Container A has twice 
as many molecules as container B.  

•  Which is the correct statement about the absolute 
temperatures  in containers A and B, respectively?  

A.  TA  =  TB  
B.  TA  =  2 TB   
C.  TA  =   (1/2)TB    
D.  TA  =  (1/4) TB    
E.  TA  =   (1/√2)TB    
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PV = nRT   so   T = PV / nR( )∝ 1/ n( )



Relating gas laws to molecular motion 
•  P, V, T are macroscopic quantities 

–  Human-scale quantities, measurable on a table-top 

•  Molecular motion (x, v vs t ) = microscopic quantities 
•  Kinetic theory of gases: connect micro to macro 

–  Model for ideal gas 
•  N is large, molecules are identical point-particles 
•  Molecules move randomly 
•  No inelastic interactions: collisions are always elastic 

–  Recall: elastic means no loss of KE due to collision 
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Elastic collision with wall means 
momentum (so, v ) component 
perpendicular to wall gets reversed 

Speed unchanged 
Vertical v unchanged 
Horizontal v reversed 



Calculate the pressure of a gas 
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Change in horizontal momentum of molecule
  Δpx = px , f − px ,i =mvx − (−mvx ) = 2mvx
Change is due to force exerted by wall:
FΔt = Δpx , FONWALL = −FBY WALL

Average force exerted on wall by one molecule FAVG= 
Δpx
Δt

where   Δt = time between collisions = round-trip time

Δt = 2L / vx → FAVG= 
2mvx

2L / vx
=
mvx

2

L
Assume symmetrical container (LxLxL):   (doesn't matter in the end)

PAVG= 
FAVG
A

=
1
L2

mvx
2

L

$

%
&&

'

(
))=
mvx

2

V
→Adding up all molecules,  PV = N m vx

2( )AVG



Defining temperature (again): molecular scale 

•  Now we can connect macro to micro: 

Nothing special about the x-direction: random motion means 
 
 
          (because random v components are independent of one another) 
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PV = NkT = 2N 1
2mvx

2( )av
  →  1

2mvx
2( )av =

1
2 kT

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2

av av av av av av av av
  and  3x y z x y z xv v v v v v v v= = = + + =

The average translational kinetic energy of the molecules is:

K translational av =
1
2
mv2( )

av
= 3

2
kT   per molecule

( )1 3 32
trans 2 2 2av
K N mv NkT nRT= = =

v2( )av
=

3kT
mmolecule

=
3NAkT
NAmmolecule

=
3RT
MMOLE

  and  vRMS = v2( )av =
3RT
MMOLE

Deep and fundamental ! 
Avg KE of gas molecule is 
proportional to T, with 
Boltzmann constant  as 
the factor 

Root-mean-square (RMS) - useful avg where quantity-squared is what matters: 



Example: RMS speed of gas molecules 
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RMS means: take each molecule’s speed and square it, then find 
the average of those numbers, and THEN take the square root. 

In practice: we find the statistical speed distribution of the 
molecules, and use that to estimate RMS speed  
 Oxygen gas (O2) has a molar mass* M of about 32.0 g/mol, and hydrogen 
gas (H2) has a molar mass of about 2.00 g/mol.  Assuming ideal-gas 
behavior, what is:  

vO2 RMS =
3RT
MO

=
3(8.314 J/mol ⋅K)(300 K)

(0.0320 kg/mol)
= 485 m/s

vH2 RMS =
3RT
MH

=
3(8.314 J/mol ⋅K)(300 K)

(0.0020 kg/mol)
=1,934 m/s

Note: Walker says 
“molecular mass” for molar 
mass – confusing.  
MX = grams in 1 mole of X,  
mX = mass (in kg) of one X 
molecule 

(a) the RMS speed of an oxygen molecule when 
the temperature is 300K (27°C), and  

(b) RMS speed of a hydrogen molecule at the same 
temperature 



Probability Distributions  

Notice, the fractions will add to 1 for all possible scores, so that Σfi = 1.  
In that case the histogram represents a normalized distribution 
function.  We have the following relations: 
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We give a 25 point quiz to N students, 
and plot the results as a histogram, 
showing the number ni  of students, 
or  fraction fi=ni/N of students,  for 
each possible score vs. score, from 0 
to 25.   
Such plots represent distributions.  
For reasonably large N, we can use  fi = ni/N to 
estimate the probability that a randomly 
selected student received a score si .    

It’s not useful for 
class grades, but we 
could also calculate 
the average squared 
score: 

Peak or mode = 
s with max 
probability 


