Physics 115
General Physics II

Session 12

Thermodynamic processes

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/
Lecture Schedule
(up to exam 2)

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Topic</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Apr</td>
<td>Mon</td>
<td>12 Specific Heats, Second Law</td>
<td>18.4-18.6</td>
</tr>
<tr>
<td>22-Apr</td>
<td>Tues</td>
<td>13 Entropy</td>
<td>18.7-18.10</td>
</tr>
<tr>
<td>24-Apr</td>
<td>Thurs</td>
<td>14 Charges</td>
<td>19.1-19.3</td>
</tr>
<tr>
<td>25-Apr</td>
<td>Fri</td>
<td>15 E field</td>
<td>19.4-19.5</td>
</tr>
<tr>
<td>28-Apr</td>
<td>Mon</td>
<td>16 Conductors</td>
<td>19.6</td>
</tr>
<tr>
<td>29-Apr</td>
<td>Tues</td>
<td>17 Gauss law</td>
<td>19.7</td>
</tr>
<tr>
<td>1-May</td>
<td>Thurs</td>
<td>18 Electrical potential</td>
<td>20.1-20.3</td>
</tr>
<tr>
<td>2-May</td>
<td>Fri</td>
<td>19 Potential, conductors</td>
<td>20.4</td>
</tr>
<tr>
<td>5-May</td>
<td>Mon</td>
<td>20 Capacitors</td>
<td>20.5-20.6</td>
</tr>
<tr>
<td>6-May</td>
<td>Tues</td>
<td>21 Current</td>
<td>21.1-21.2</td>
</tr>
<tr>
<td>8-May</td>
<td>Thurs</td>
<td>22 Power, Series & Parallel Circuits</td>
<td>21.3-21.4</td>
</tr>
<tr>
<td>9-May</td>
<td>Fri</td>
<td>EXAM 2 - Ch. 18,19,20</td>
<td></td>
</tr>
</tbody>
</table>

4/21/14 Physics 115
Announcements

• Exam 1 scores just came back from scan shop – grades will be posted on WebAssign gradebook later today
 – I will post on Catalyst Gradebook tomorrow, along with statistics (avg, standard deviation)

Solutions: see ex1-14-solns.pdf posted in class website

Slides directory
Next topic: Laws of Thermodynamics

(Each of these 4 “laws” has many alternative versions)

We’ll see what all these words mean later...

- **0th Law**: if objects are in thermal equilibrium, they have the same T, and no heat flows between them
 - Already discussed
- **1st Law**: Conservation of energy, including heat:

 Change in internal energy of system = Heat added – Work done

- **2nd Law**: when objects of different T are in contact, *spontaneous* heat flow is from higher T to lower T
- **3rd Law**: It is impossible to bring an object to T=0K in any finite sequence of processes
Internal energy and 1st Law

- **1st Law of Thermodynamics**: The change in internal energy of a system equals the heat transfer into the system\(^*\) minus the work done by the system.

(Essentially: conservation of energy).

\[\Delta U = Q_{in} - W \]

\(\text{System} \) could be \(n \) moles of ideal gas, for example...

Sign convention:
- \(W > 0 \) \(\rightarrow \) work done by the system
- \(W < 0 \) \(\rightarrow \) work done on the system

Minus sign in equation means:
- \(U \) decreases if \(W \) is by system
- \(U \) increases if \(W \) is on system

Work done by the system
Example: expanding gas pushes a piston some distance
Work done on the system
Example: piston pushed by external force compresses gas
Example of sign convention

- Ideal gas in insulated container: no Q in or out: $Q=0$
- Gas expands, pushing piston up ($F=mg$, so $W=mgd$)
 - Work is done by system, so W is a positive number
 - So U is decreased

- If instead: we add more weights to compress gas
 - Work done on gas \rightarrow now W is a negative number
 - U is increased

\[\Delta U = -W \]

\[U_f = U_i - W \]

\[\Delta U = -(-W) = +W \]
State of system, and state variables

• U is another thermodynamic property, like P, V, and T, used to describe the state of the system.
 – They are connected by equations describing system behavior: for ideal gas, PV=NkT, and U=(3/2)NkT
 “equation of state”

• Q and W are not state variables: they describe changes to the state of the system.
 – Adding or subtracting Q or W moves the system from one state to another: points in a {P,V,T} coordinate system.
 – The system can be moved from one point to another via different sequences of intermediate states.
 = different paths in PVT space
 = different sequences of adding/subtracting W and Q
 = different thermodynamic processes
3D model of PVT surface

- Ideal gas law $PV = NkT$ constrains state variables P, V, T to lie on the curved surface shown here.
- Every point on the surface is a possible state of the system.
- Points off the surface cannot be valid combinations of P, V, T, for an ideal gas.

hyperphysics.phy-astr.gsu.edu
Thermodynamic processes

- For ideal gas, we can describe processes that are:
 - Isothermal (T=const)
 - Constant P
 - Constant V
 - Adiabatic (Q=0)

- Quasi-static processes: very slow changes
 - System is approximately in equilibrium throughout
 - Example: push a piston in very small steps
 - At each step, wait to let system regain equilibrium
 - “Neglect friction”

Such processes are reversible
 - Could run process backwards, and return to initial (P,V,T) state

Real processes are irreversible
 (due to friction, etc)
Quasi-static compression: reversible

- Ideal gas in piston, within heat reservoir
 - Compress gas slowly; heat must go out to keep $T=\text{const}$
 - Temperature reservoir can absorb heat without changing its T
- Reverse the process: expansion
 - Let gas pressure push piston up slowly; reservoir must supply Q to keep $T=\text{const}$
 - System (gas) and reservoir ("surroundings") are back to their original states
 - Reversible process for ideal gas, ideal reservoir, no friction
- But: No real process is truly reversible (friction in piston, etc)
Process diagrams

- **Example:** constant P expansion of ideal gas
 - Ideal gas with \(P = P_0 \), at \(x_i \)
 - Frictionless piston moves to \(x_f \)
 - Volume increases from \(V_i \) to \(V_f \)

- Gas has done work on piston
 \[W = F \Delta x = (P_0 A) \Delta x = P_0 \Delta V \]

Plot process on \(P \) vs \(V \) axes:
Notice: \(W = P_0 \Delta V = \text{area under path} \) of process in the \(P-V \) plot

This applies to any path, not just for constant-\(P \):
Work done = area under path on a \(P \) vs \(V \) plot

\(\Delta V \)

\(P_0 \)

\(\Delta V \)

\(O \)

\(V_i \)

\(V_f \)

\(V \) (m\(^3\))

\(P \) (kPa)

\(4/21/14 \)

Physics 115
Example

• Ideal gas expands from $V_{\text{initial}} = 0.40 \text{ m}^3$ to $V_{\text{final}} = 0.62 \text{ m}^3$ while its pressure increases linearly from $P_i = 110\text{kPa}$ to $P_f = 230\text{kPa}$

• Work done = area under path

Without calculus, we can calculate as Pythagoras would have done:

Area = rectangle + triangle = $(110\text{kPa})(0.22\text{m}^3) + \frac{1}{2}(120\text{kPa})(0.22\text{m}^3)$

Area = $W = 3.7 \times 10^4 \text{ J}$

This work was done BY the expanding gas, so its internal energy is reduced
Constant volume processes

- For $V =$ constant, $P = \left(\frac{nR}{V}\right) T$
- No work done (area=0)
- T must increase to change P
- 1^{st} Law: $\Delta U = Q - W \Rightarrow \Delta U = Q$
Process paths in P,V plots

- Many possible paths on a P vs V diagram, for a gas moved from state \((P_i, V_i)\) to \((P_f, V_f)\).
- Suppose the final state has unchanged T, then
 \[P_iV_i = nRT = P_fV_f \]
- \(U\) depends only on T, so the initial and final internal energies \(U\) also must be equal
 Note: To keep constant T (\(\Delta U=0\)), heat transfer must occur, with \(Q = W\)
- Therefore, since area under \(\{P,V\}\) path = work done,
 \[W_{\text{Path A}} > W_{\text{Path C}} > W_{\text{Path B}} \]
 (Is work by or on the gas?)
Isothermal process

- If ideal gas expands but T remains constant, P must drop: $P = \frac{nRT}{V}$
 - Family of curves for each T
 - Shape is always $\sim \frac{1}{V}$
 - W by gas= area under plot
 - Add up slices of width ΔV
 \[W \approx \sum_{V_i}^{V_f} \left(\frac{nRT}{V} \right) \Delta V \]
 - Use calculus, integrate to find area:
 \[\Rightarrow \int_{V_i}^{V_f} \frac{nRT}{V} dV = nRT \ln \left(\frac{V_f}{V_i} \right) \]
 "\ln" = natural (base e) logarithm
 \[e = \frac{1}{1} + \frac{1}{2!} + \frac{1}{3!} + \cdots = 2.72\ldots \]
Isothermal example

- **For** $T = \text{constant}$, U **must be constant**: $U = (3/2) nRT$

 So $Q - W = 0$; W **is done by gas**, so $Q=W$

 +Q **means into system**

 We must add heat $Q=W$ **to keep** T **constant**

 Example: $n = 0.5\, \text{mol}, T = 310\, \text{K}, V_{i} = 0.31\, \text{m}^3, V_{f} = 0.50\, \text{m}^3$

 $$W = nRT \ln \left(\frac{V_{f}}{V_{i}} \right) = (0.5\, \text{mol}) (8.31\, \text{J/mol/K}) (310\, \text{K}) \ln \left(\frac{0.45\, \text{m}^3}{0.31\, \text{m}^3} \right)$$

 $$\ln (1.45) = 0.373 \implies W = 480\, \text{J} = Q_{IN}$$

 For reverse direction: Compress gas

 Now work is done on gas, so W **is negative**: must have Q **out of gas**
Adiabatic (Q=0) processes

- If ideal gas expands but no heat flows, work is done by gas \((W>0)\) so \(U\) must drop: \(\Delta U = Q - W \Rightarrow \Delta U = -W\)

\(U \sim T\), so \(T\) must drop also

Adiabatic compression

Adiabatic expansion

Adiabatic expansion path on \(P\) vs \(V\) must be steeper than isotherm path:
Temperature must drop \(\rightarrow\)
State must move to a lower isotherm