

Thermodynamic processes

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule (up to exam 2)

21-Apr	Mon	12	Specific Heats, Second Law	18.4-18.6
22-Apr	Tues	13	Entropy	18.7-18.10
24-Apr	Thurs	14	Charges	19.1-19.3
25-Apr	Fri	15	E field	19.4-19.5
28-Apr	Mon	16	Conductors	19.6
29-Apr	Tues	17	Gauss law	19.7
1-May	Thurs	18	Electrical potential	20.1-20.3
2-May	Fri	19	Potential, conductors	20.4
5-May	Mon	20	Capacitors	20.5-20.6
6-May	Tues	21	Current	21.1-21.2
8-May	Thurs	22	Power, Series & Parallel Circuits	21 3-21.4
9-May	Fri		EXAM 2 - Ch. 18,19,20	

Today

Announcements

- Exam 1 scores just came back from scan shop grades will be posted on WebAssign gradebook later today
 - I will post on Catalyst Gradebook tomorrow, along with statistics (avg, standard deviation)

Solutions: see ex1-14-solns.pdf posted in class website *Slides* directory

Next topic: Laws of Thermodynamics

(Each of these 4 "laws" has many alternative versions) We'll see what all these words mean later...

- Oth Law: if objects are in thermal equilibrium, they have the same T, and no heat flows between them
 - Already discussed
- 1st Law: Conservation of energy, including heat: Change in internal energy of system = Heat added – Work done
- 2nd Law: when objects of different T are in contact, *spontaneous* heat flow is from higher T to lower T
- 3rd Law: It is impossible to bring an object to T=0K in any finite sequence of processes

Internal energy and 1st Law

 1st Law of Thermodynamics: The change in internal energy of a system equals the heat transfer into the system* minus the work done by the system.

(Essentially: conservation of energy).

$$\Delta U = Q_{\rm in} - W$$

Sign convention:

 $W > 0 \rightarrow$ work done by the system $W < 0 \rightarrow$ work done on the system

Minus sign in equation means: U decreases if W is <u>by</u> system U increases if W is <u>on</u> system **System* could be *n* moles of ideal gas, for example...

Work done <u>by</u> the system Example: expanding gas pushes a piston some distance Work done <u>on</u> the system Example: piston pushed by external force compresses gas

4/21/14

Example of sign convention

- Ideal gas in insulated container: no Q in or out: Q=0
- Gas expands, pushing piston up (F=mg, so W=mgd)
 - Work is done by system, so W is a positive number

- If instead: we add more weights to compress gas
 - − Work done <u>on</u> gas \rightarrow now W is a *negative* number
 - U is increased

$$\Delta U = -(-W) = +W$$

4/21/14

State of system, and state variables

- U is another thermodynamic property, like P, V, and
 - T, used to describe the **state of the system**
 - They are connected by equations describing system behavior: for ideal gas, PV=NkT, and U=(3/2)NkT "equation of state"
- Q and W are not state variables: they describe changes to the state of the system
 - Adding or subtracting Q or W moves the system from one state to another: points in a {P,V,T} coordinate system
 - The system can be moved from one point to another via different sequences of intermediate states
 - = different paths in PVT space
 - = different sequences of adding/subtracting W and Q
 - = different thermodynamic processes

3D model of PVT surface

- Ideal gas law PV=NkT constrains state variables P,V,T to lie on the curved surface shown here
- Every point on the surface is a possible state of the system
- Points off the surface cannot be valid combinations of P,V,T, for an ideal gas

hyperphysics.phy-astr.gsu.edu

Thermodynamic processes

- For ideal gas, we can describe processes that are
 - Isothermal (T=const)
 - Constant P
 - Constant V
 - Adiabatic (Q=0)
- Quasi-static processes : very slow changes
 - System is approximately in equilibrium throughout
 - Example: push a piston in very small steps
 - At each step, wait to let system regain equilibrium "Neglect friction" F = PA

Such processes are **reversible**

 Could run process backwards, and return to initial (P,V,T) state
Real processes are **irreversible** (due to friction, etc)

4/21/14

Quasi-static compression: reversible

- Ideal gas in piston, within heat reservoir
 - Compress gas slowly; heat must go out to keep T=const
 - Temperature reservoir can absorb heat without changing its T
- Reverse the process: expansion
 - Let gas pressure push piston up slowly; reservoir must supply Q to keep T=const
 - System (gas) and reservoir ("surroundings") are back to their original states
 - Reversible process for ideal gas, ideal reservoir, no friction
 - But: No real process is truly reversible (friction in piston, etc)

Physics 115

Process diagrams

- Example: constant P expansion of ideal gas
 - Ideal gas with $P=P_0$, at x_i
 - Frictionless piston moves to x_f
 - Volume increases from V_i to V_f
- Gas has done work on piston $W = F\Delta x = (P_0 A) \Delta x = P_0 \Delta V$

Plot process on P vs V axes: Notice: $W = P_0 \Delta V = area under$ path of process in the P-V plot

This applies to any path, not just for constant-P: Work done = area under path on a P vs V plot

Example

- Ideal gas expands from $V_{initial} = 0.40 \text{ m}^3$ to $V_{final} = 0.62 \text{ m}^3$ while its pressure increases linearly from $P_i = 110$ kPa to $P_f = 230$ kPa
- Work done = area under path

Without calculus, we can calculate as Pythagoras would have done: Area = rectangle + triangle = $(110kPa)(0.22m^3) + \frac{1}{2}(120kPa)(0.22m^3)$ Area = W = 3.7 x 10⁴ J

This work was done BY the expanding gas, so its internal energy is reduced

Constant volume processes

- For V=constant, P=(nR/V) T
- No work done (area=0)
- T must increase to change P
- 1st Law: $\Delta U = Q W \Rightarrow \Delta U = Q$

Copyright © 2007 Pearson Prentice Hall, Inc.

Process paths in P,V plots

- Many possible paths on a P vs V diagram, for a gas moved from state (P_i, V_i) to (P_f, V_f).
- Suppose the final state has unchanged T, then $P_iV_i = nRT = P_fV_f$
- U depends only on T, so the initial and final internal energies U also must be equal

Note: To keep constant T ($\Delta U=0$), heat transfer must occur, with Q = W

• Therefore, since area under {P,V} path = work done,

$$W_{\text{Path A}} > W_{\text{Path C}} > W_{\text{Path B}}$$
 (Is work by or on the gas?)

Isothermal process

Pressure, P (kPa)

- If ideal gas expands but T remains constant, P must drop: P = nRT/V
 - Family of curves for each T
 - Shape is always ~ 1 / V
 - W by gas= area under plot
 - Add up slices of width ΔV $W \approx \sum_{V_i}^{V_f} \left(\frac{nRT}{V}\right) \Delta V$
 - Use calculus, *integrate* to find area:

$$\Rightarrow \int_{V_i}^{V_f} \frac{nRT}{V} dV = nRT \ln\left(\frac{V_f}{V_i}\right)$$

"ln" = natural (base *e*) logarithm $e = \frac{1}{1} + \frac{1}{2!} + \frac{1}{3!} + \dots = 2.72\dots$ 4/21/14

Isothermal example

Adiabatic (Q=0) processes

- If ideal gas expands but no heat flows, work is done by gas (W>0) so U must drop: $\Delta U = Q W \Rightarrow \Delta U = -W$
 - U \sim T, so T must drop also

Adiabat

20

Adiabatic expansion

