Physics 115 General Physics II

Session 14

Real Cycles Entropy Electricity

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule (up to exam 2)

21-Apr	Mon	12	Specific Heats, Second Law	18.4-18.6
22-Apr	Tues	13	Entropy	18.7-18.10
24-Apr	Thurs	14	Charges	19.1-19.3
25-Apr	Fri	15	Efield	19.4-19.5
28-Apr	Mon	16	Conductors	19.6
29-Apr	Tues	17	Gauss law	19.7
1-May	Thurs	18	Electrical potential	20.1-20.3
2-May	Fri	19	Potential, conductors	20.4
5-May	Mon	20	Capacitors	20.5-20.6
6-May	Tues	21	Current	21.1-21.2
8-May	Thurs	22	Power, Series & Parallel Circuits	21.3-21.4
9-May	Fri		EXAM 2 - Ch. 18,19,20	

(We're about ¹/₂ day behind, will catch up...)

Physics 115

Announcements

- Exam grades are on Catalyst Gradebook now
 - If you wanted to pick up your exam (handout) paper, pls do so today or tomorrow: outside my office (B-303 PAB)
- Clarifications:
 - Only your best 2 out of 3 mid-term exam scores will count
 - Only your best 7* out of 9 HW scores will count
 - Only your best 10 out of 15 (or more) quizzes will count
 - SO: No makeups/delays/redo's for any of these
 - "Curve" is applied to sums of scores, individual exams do not have letter grades applied

* By popular demand...

Last time

Carnot's theorem

- For any T_H and T_C , maximum efficiency possible is for an engine with all processes reversible
- All reversible engines operating between the same $T_{\rm H}$ and $T_{\rm C}$ have the same efficiency ϵ

Notice: says *nothing* about working fluid, cycle path, etc

• Since ε depends only on T's, Q's must be proportional

$$\varepsilon = 1 - \frac{Q_C}{Q_H} \Rightarrow \underbrace{\frac{Q_C}{Q_H} = \frac{T_C}{T_H}}_{\varepsilon} \Rightarrow \varepsilon = 1 - \frac{T_C}{T_H}$$
 Yet another way to define T :
Ratio of exhaust / input Qs

 Carnot efficiency tell us the maximum work we can get per Joule of energy in:

$$\varepsilon = \frac{W}{Q_H} \to W = \varepsilon Q_H \to W_{MAX} = \varepsilon_{MAX} Q_H = \left(1 - \frac{T_C}{T_H}\right) Q_H$$

2nd Law of thermodynamics

 When objects of different T are in thermal contact, spontaneous heat flow is only from higher T to lower T only – never the reverse

There are many different ways to say the same thing:

Kelvin's Statement:

No system can absorb heat from a single reservoir and convert it entirely to work without additional net changes in the system or its surroundings.

Clausius' Statement:

A process whose only net result is to absorb heat from a cold reservoir and release the same amount of heat to a hot reservoir is impossible.

Basic idea: of all possible processes that conserve energy, *only some* can actually occur; without external help, heat never flows from cold to hot regions!

Also: cannot reach 100% efficiency in any thermodynamic process 1st law: there is no free lunch! 2nd law: you can't even break even!

- Carnot efficiency is not relevant
- But Carnot Q / T relationship still applies:

$$Carnot: \frac{Q_C}{Q_H} = \frac{T_C}{T_H} \rightarrow W = Q_H - Q_C = Q_H \left(1 - \frac{Q_C}{Q_H}\right) = Q_H \left(1 - \frac{T_C}{T_H}\right)$$

- Benefit/cost = (Heat removed from T_C) / W

• Define 'coefficient of performance': $COP = Q_C / W_{IN}$

Cold reservoir (inside of refrigerator)

Refrigerator

• Example:

We want $T_C = 5 \text{ C} = 278 \text{ K}$, and $T_H = \text{room temp} = 293 \text{ K}$ Refrigerator walls leak in 100 J/sec (100W) from room What is the minimum possible power the refrigerator motor must supply?

$$\frac{Q_C}{Q_H} = \frac{T_C}{T_H} \rightarrow Q_H = Q_C \frac{T_H}{T_C} \rightarrow W_{MIN} = Q_H \left(1 - \frac{T_C}{T_H}\right) = Q_C \left(\frac{T_H}{T_C} - 1\right)$$

We must remove $Q_c = 100J$ each second, so in one second

$$W_{MIN} = 100J \left[\left(\frac{293K}{278K} \right) - 1 \right] = 105.3J \rightarrow W_{MIN,persec} = 5.3J$$
 (5.3W)

That's for an ideal, *reversible* Carnot refrigerator Reality: Typical home refrigerator has COP = 4 $COP = Q_C / W_{IN}$ So power required W= Q_C / COP = 100W/4 = 25W

Notice: not much work is required to push Q backwards

Entropy

• From Carnot's theorem we get

$$\frac{Q_C}{Q_H} = \frac{T_C}{T_H} \rightarrow \frac{Q_C}{T_C} = \frac{Q_H}{T_H} \Rightarrow \frac{Q_T}{T} = const, \text{ for ideal, reversible Carnot engine}$$

 Rudolf Clausius (Germany, 1865): define a new thermodynamic state variable – *entropy* S

$$\Delta S = \frac{\Delta Q_T}{T}, \quad \Delta Q_T = \text{heat transferred at temperature T}$$

- This is change in entropy for heat transferred reversibly at T
- Entropy increases for Q > 0 → heat *into* system, decreases for Q < 0 → heat *removed from* system
- How to apply to a real, irreversible processes?
 - S is a <u>state variable</u>: for a reversible process with same initial and final states, ΔS will be the same

Entropy change in cyclic engines

• For an ideal, reversible heat engine,

 $\Delta S_{H} = -\frac{\Delta Q_{H}}{T_{H}}, \quad -\Delta Q_{H} = \text{heat } taken \text{ from hot reservoir}$ $\Delta S_{C} = \frac{\Delta Q_{C}}{T_{C}}, \quad +\Delta Q_{C} = \text{heat } added \text{ to cold reservoir}$ $\Delta S_{C} = -\frac{\Delta Q_{H}}{T_{C}}, \quad +\Delta Q_{C} = \text{heat } added \text{ to cold reservoir}$ $\Delta S_{TOTAL} = -\frac{\Delta Q_{H}}{T_{U}} + \frac{\Delta Q_{C}}{T_{C}} = 0 \quad \text{because } \frac{Q_{C}}{T_{C}} = \frac{Q_{H}}{T_{U}} \text{ (Carnot)}$

- So entropy of system + reservoirs does not change
- In any real engine, $\frac{Q_C}{T_C} > \frac{Q_H}{T_H}$ so $\Delta S_{TOTAL} = -\frac{\Delta Q_H}{T_H} + \frac{\Delta Q_C}{T_C} > 0$
- Conclusion: Entropy of (system + surroundings)* always increases when any irreversible process occurs
 * = the Universe

Example: ideal heat engine operation

- Heat engine operates between 576 K and 305 K
- 1050 J is taken from the hot reservoir

• So
$$\varepsilon = \left(1 - \frac{T_C}{T_H}\right) = \left(1 - \frac{305}{576}\right) = 0.47$$

$$\varepsilon = W \, / \, Q_{_H} \longrightarrow W = \varepsilon Q_{_H} = 494 J$$

• Entropy changes:

$$\Delta S_{H} = -\frac{1050J}{576K} = -1.82J / K$$
$$\Delta S_{C} = \frac{(Q_{H} - W)}{T_{C}} = \frac{(1050J - 494J)}{305K} = +1.82J / K$$

 $\Delta S_{TOTAL} = -\frac{\Delta Q}{T_H} + \frac{\Delta Q}{T_C} = 0$ Entropy of Universe is unchanged

Irreversible process example

- Move 1050J from hot to cold reservoirs
 - example: cold object comes to equilibrium temperature with room, by losing 1050 J of heat

Now

$$\Delta S_{H} = -\frac{1050J}{576K} = -1.82J / K$$

$$\Delta S_{C} = \frac{(Q_{H})}{T_{C}} = \frac{(1050J)}{305K} = +3.44J / K$$

$$\Delta S_{TOTAL} = +1.62J / K$$

Entropy of Universe had to increase: there was no W to subtract in Q_C !

$$\Delta S_{TOTAL} = -\frac{\Delta Q_H}{T_H} + \frac{\Delta Q_C}{T_C} > 0$$

4/24/14

ſ

Increased entropy = Increased disorder

- Difference between reversible engine and irreversible process with same T's = work obtained from engine
 - For irreversible process, ΔS_{UNIV} was +1.62 J/K
 - For reversible engine, W = 494 J
 - This is exactly the Q that is "wasted" in irreversible process

• Notice:
$$\frac{W}{T_c} = \frac{494J}{305K} = 1.62J/K \implies W = \Delta S_{UNIV}$$

- The extra energy exhausted at $T_C \rightarrow \Delta S_{UNIV} > 0$
- "Opportunity lost" Q could have become work
- In general: entropy increase signals increased disorder
 - Salt and pepper in separate shakers vs mixed salt and pepper
 - It takes work to regain the order
 - Heat separated into H and C reservoirs, vs at equilibrium T
 - It takes work to push the Q back to higher T

Entropy, disorder, "the arrow of time"

- 2nd Law says "spontaneous heat flow is from higher T to lower T only – never the reverse"
- Physical processes proceed "naturally" from order to greater disorder, never the reverse
 - Another expression of the 2nd Law of thermodynamics
- Deep thought:
 - Most basic physics processes are in principle "Time symmetric"
 - They can play equally well backwards as forwards
 - Example: billiard balls colliding
 - In Relativity, time is just another dimension, like x, y, z
 - To us, time seems only to move forward
 - Explanation: probability, not physical law
 - There are many more ways to be disorderly than orderly
 - Example: sox neatly folded in drawer, vs strewn in room

Entropy and Probability

Consider free* expansion of a gas, from an initial volume V_1 to a final volume $V_2 = 2V_1$. (*no work done by gas)

"It Can Be Shown": The entropy change of the universe for this process given by: $\Delta S = nR \ln \frac{V_2}{V_1} = nR \ln 2$

Why can't the gas spontaneously go back into its original volume? (Would not violate the 1st law: there is no energy change involved.)

Answer: such a contraction is extremely improbable.

Free expansion: probability

Suppose the gas consisted of only N=10 molecules

What is the probability that the process will reverse itself, and all 10 molecules will happen to be back in the left-hand flask, at any given instant? Ludwig Boltzmann connected entropy and probability

$$p(1 \text{ molecule}) = \frac{1}{2}$$

$$p(10 \text{ molecules}) = \left[p(1 \text{ molecule})\right]^{10} = \left(\frac{1}{2}\right)^{10} = \frac{1}{1024}$$

$$\ln \text{ general: } p = \left(\frac{V_2}{V_1}\right)^N \qquad \ln p = N \ln \frac{V_2}{V_1} = \left(nN_A \ln \frac{V_2}{V_1}\right)$$

$$\Delta S = nR \ln \frac{V_2}{V_1} \rightarrow \Delta S = \frac{R}{N_A} \ln p = k \ln p \qquad \Delta S = k \ln p$$

Quiz 8

 The air in this room is uniformly distributed – air pressure is the same everywhere.

What physical principle assures us the air will not suddenly collect in one corner of the room, leaving us gasping in a vacuum?

- A. Conservation of energy
- B. Conservation of matter
- C. Bernoulli's principle
- D. 2nd Law of thermodynamics