Physics 115 General Physics II

Session 16

Electric Fields Charging by Induction

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule (up to exam 2)

21-Apr	Mon	12	Specific Heats	18.4-18.6
22-Apr	Tues	13	Second Law	18.7-18.10
24-Apr	Thurs	14	Entropy	18.8-18.10
25-Apr	Fri	15	Charges	19.1-19.4
28-Apr	Mon	16	E field	19.5-19.66
29-Apr	Tues	17	Gaussiaw	19.7
1-May	Thurs	18	Electrical potential	20.1-20.3
2-May	Fri	19	Potential, conductors	20.4
5-May	Mon	20	Capacitors	20.5-20.6
6-May	Tues	21	Current	21.1-21.2
8-May	Thurs	22	Power, Series & Parallel Circuits	21.3-21.4
9-May	Fri		EXAM 2 - Ch. 18,19,20	

Minor revisions to calendar – almost caught up...

Today

Example: Point of Zero Force

Two positively charged particles q_1 and $q_2=3q_1$ are placed 10. 0 cm apart. Where could another charge q_3 be placed so it experiences no net force? (other than at infinity...)

- 1. Need force vectors to be co-linear, so location must be on x axis.
- 2. Need force vectors to be in opposite directions, so location must be between 0 and d.
- 3. Need force vectors equal in magnitude

 $r_1 = x$, $r_2 = d-x$ $q_2=3q_1$ so $F=Kq_1q_3/x^2=Kq_2q_3/(d-x)^2$. Therefore, $(d-x)^2=3x^2$ or $x=d/(1\pm\sqrt{3}) = 10$ cm/ $(1\pm1.732) - 2$ solutions: $x_1=10.0$ cm/-0.732=-13.66 cm, ...this does not satisfy requirement #2. $x_+=10.0$ cm/2.732 = 3.66 cm OK

What's a "field"?

According to physicists*, a field is:

An association between some physical quantity and each point in some region of space.

Examples: *mathematicians have a more abstract description

1. Temperature in this room

Every point in the room has a temperature (scalar quantity)

The temperature "varies smoothly" from point to point

 \rightarrow describe T with real numbers

T(**x**) is a scalar field

2. Gravitational field

Every point in the room has some *g* vector

Value and direction of \boldsymbol{g} "varies smoothly" from point to point.

g(x) is a vector field

The Field Model

Field Model:

- 1. Some charges("*source charges*"), alter the space around them by creating an electric field *E*.
- 2. A separate "*test charge" in* this electric field experiences a force *F* exerted *by the field*.

$$\vec{E}(x, y, z) = \frac{\vec{F}_{\text{on q at }(x, y, z)}}{q}$$

Units for electric field: force/charge = N/C

- 3. This equation assigns a field vector to *every point in space*.
- 4. If *q* is positive, the electric field vector points in the same direction as the force vector.
- 5. Does *E* depend on q (the charge that detects it)? No, because the force is proportional to q.

$$\vec{F} = q\vec{E}$$

The Electric Field of a Point Charge

To measure an electric field, insert a small test charge *q*' and measure the force on it. We assume the test charge does not affect the field pattern set up by other charges.

$$\vec{F}_{\text{on q'}} = \left(\frac{1}{4\pi\varepsilon_0}\frac{qq'}{r^2}, \text{ away from } q\right)$$

$$\vec{E} = \frac{\vec{F}_{\text{on q'}}}{q'}$$
$$= \left(\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}, \text{ away from q}\right)$$

Typical Electric Field Strengths

		Table 21-2	Some Ele in Nature	ctric Fields
Field location	Field strength (N/C)			<i>E</i> , N/C
Inside a current-	10 ⁻²	In household wires		10^{-2}
carrying wire		In radio wav	es	10^{-1}
Near the earth's surface	$10^{2}-10^{4}$	In the atmosp	ohere	10 ²
Near objects charged	10^3 10^6	In sunlight		10 ³
by rubbing	10-10	Under a thundercloud		104
Electric breakdown in	3×10^{6}	In a lightning bolt		104
air, causing a spark		In an X-ray tube		10^{6}
Inside an atom	1011	At the electro hydrogen	on in a atom	$6 imes 10^{11}$
		At the surfac uranium r	e of a nucleus	$2 imes 10^{21}$

Electric Field Diagrams

Things to remember about field diagrams:

- 1. The field diagram shows only a sample of the electric field. The field exists at *all points in space*.
- 2. The electric field is not a quantity that stretches from one point to another. Each vector represents the field at *one point* in space.
- 3. The arrow indicates the direction and strength of the field at *the point to which the vector tail is attached*. The length of the vector is a relative measure of the field strength.
- Some diagrams instead show continuous lines with embedded arrows. In this format, the strength of the field at any point is proportional to the density of lines: denser = stronger field

Field patterns for + and - point charges

Grass Seeds & Field Patterns

The Dipole Field

The electric field vectors are tangent to the electric field lines.

(a)

Electric Field Superposition

Superposition principle: forces from individual sources can be added vectorially to find the net force.

 $F = qE \rightarrow$ we can add field contributions from individual charges to find the net E field

Field value gives us the net force on any test charge q' at that location

Simple superposition works for discrete (individual) point charges. (For a continuous charge distribution, calculus is required to do the summation.)

<u>Example</u>: The Electric Field of a Proton

In a hydrogen atom, the electron orbits the proton at a radius of 0.053 nm. Both have charges of magnitude $e = 1.60 \times 10^{-19} \text{ C}.$

- (a) What is the proton's electric field strength at the position of the electron?
- (b) What is the magnitude of the electric force on the electron?

$$E = \frac{1}{4\pi\varepsilon_0} \frac{e}{r^2} = \frac{(8.99 \times 10^9 \text{ Nm}^2/\text{C}^2)(1.60 \times 10^{-19} \text{ C})}{(5.3 \times 10^{-11} \text{ m})^2} = 5.12 \times 10^{11} \text{ N/C}$$

$$F = eE = (1.60 \times 10^{-19} \text{ C})(5.12 \times 10^{11} \text{ N/C}) = 8.20 \times 10^{-8} \text{ N}$$

Clicker Question 9

Which charge has the **largest** electric field at the location of the numbered point?

4/28/14

Physics 115

Charge Polarization

Charging by Induction

Using charge polarization, we can induce charge on an electrically neutral object.

Example: Bring a charged rod near (but not touching) an electroscope and observe the effect on the leaves.

