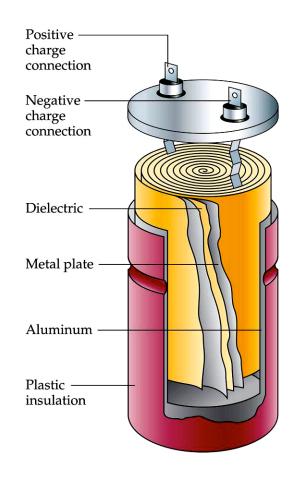
Physics 115 General Physics II

Session 20

Capacitors Dielectrics

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/



Lecture Schedule (up to exam 2)

J-Way	1 11		LAAM 2 - CH. 10,13,20	
9-May	Fri		EXAM 2 - Ch. 18,19,20	
8-May	Thurs	22	Power, Series & Parallel Circuits	21.3-21.4
6-May	Tues	21	Current	21.1-21.2
5-May	Mon	20	Capacitors	20.5-20.6
2-May	Fri	19	Potential, conductors	20.4
1-May	Thurs	18	Electrical potential	20.1-20.3
29-Apr	Tues	17	Gauss law	19.7
28-Apr	Mon	16	E field	19.5-19.66
25-Apr	Fri	15	Charges	19.1-19.4
24-Apr	Thurs	14	Entropy	18.8-18.10
22-Apr	Tues	13	Second Law	18.7-18.10
21-Apr	Mon	12	Specific Heats	18.4-18.6

Today

Announcements

- Exam 2 is this Friday 5/9
 - Covers material discussed in class from Chs 18, 19, 20
 - NOT Ch. 21
 - Same format and procedures as last exam
 - If you arranged to take exam 1 with section B, please do same for all remaining exams, OR email us to say you want to change
 - Practice questions will posted Tuesday, and we will review them in class Thursday

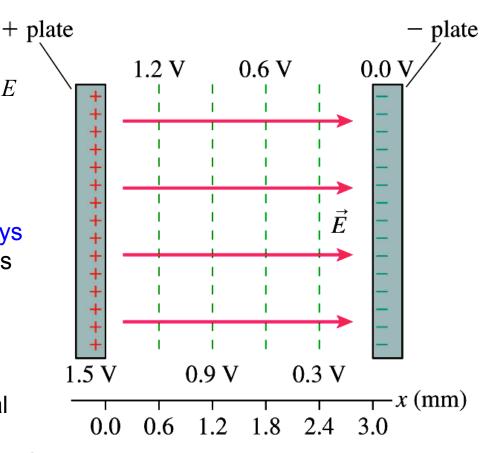
Field Lines and Equipotentials

Field maps can have equipotentials drawn, simultaneously showing the E field and the electric potential V. Here: map for equal and oppositely charged plates.

Remember: equipotentials will always be perpendicular to field lines: that's how we define potentials! (no work done moving along one)

Remember: both field lines and *V* contours are "just pictures", not real objects.

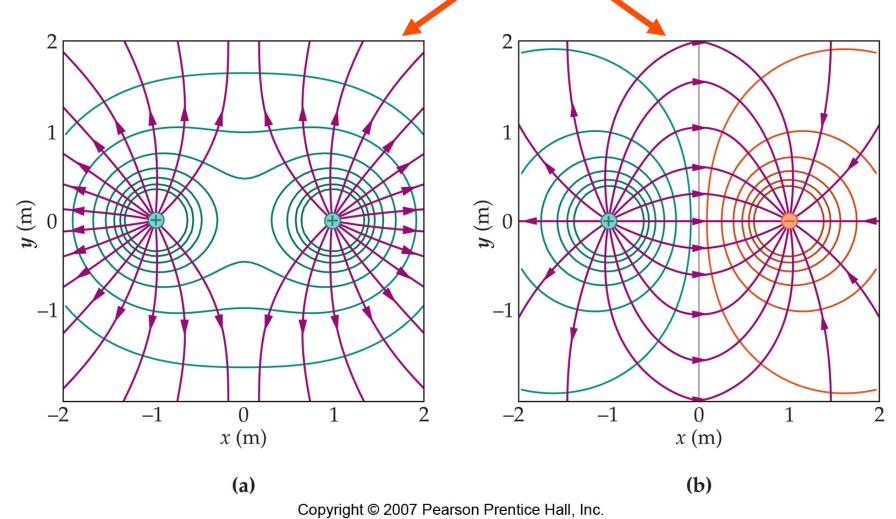
Spacing of lines, etc, is just a matter of choice.



Notice: *V* increases in opposite direction to motion of a "falling" +q

Equipotentials around sets of charges

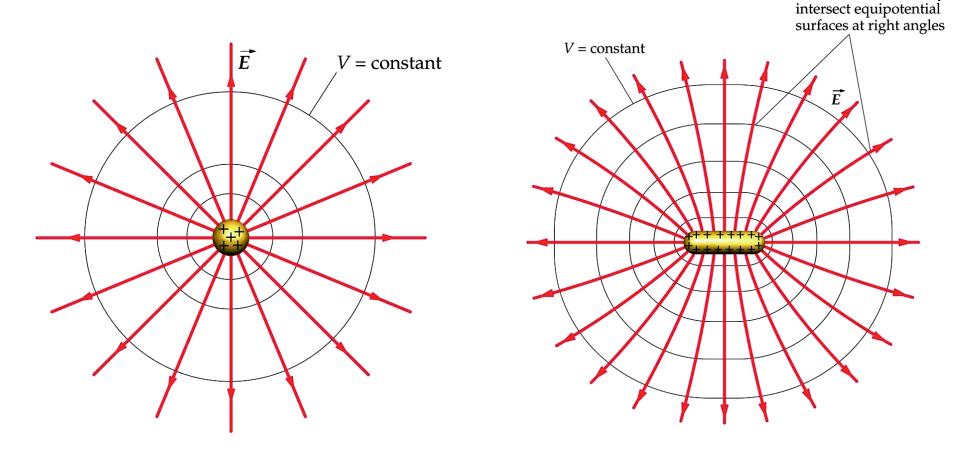
• For 2 point charges (both +, or a dipole)



Conductors and Equipotentials

Recall: All points on or inside a conductor in electrostatic equilibrium must be at the same potential.

(Otherwise, mobile charges will move around until the potential IS constant.) Therefore, the surface of a conductor is an *equipotential*.



Why is charge concentrated near sharp spots?

 Conducting sphere creates external E field as if it were a point charge at its center (same as gravity of Earth)

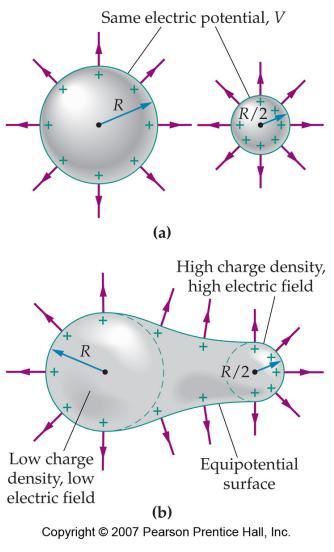
Surface area $A = 4\pi R^2$, charge density $\sigma = Q / A$

$$V(R) = \frac{kQ}{R} = 4\pi k\sigma R \rightarrow V \propto R$$

5/5/14

 If we want 2 conducting spheres of different radii to have the same potential at their surfaces, we have to give the smaller one larger charge density (not more Q):

Surface area
$$A = 4\pi r^2$$
, charge density $\sigma_1 = Q_1 / A$
 $V = 4\pi k \sigma_1 R \Rightarrow R / 2$ needs $2\sigma_1$ to have same V
(But notice: $Q_2 = \sigma_2 A = 2\sigma_1 4\pi (R/2)^2 = Q_1 / 2$)
 $E_{SURFACE} = \frac{kQ}{r^2} = \frac{k(4\pi r^2\sigma)}{r^2} = 4\pi k\sigma$ So higher σ
 \Rightarrow higher F



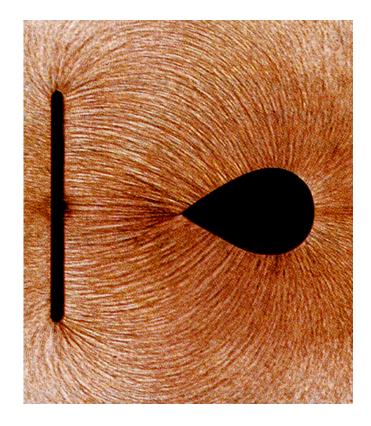
7

Charge density and E are larger where radius of curvature is smaller, to keep V=constant

SO: On the surface of a non-spherical conductor, regions with a *small* radius of curvature must have *high* surface E field and charge density (~1/R).

In terms of permittivity instead of k, same equations are

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{R} = \frac{1}{4\pi\varepsilon_0} \frac{4\pi R^2 \sigma}{R} = \frac{R\sigma}{\varepsilon_0}$$
$$\sigma = \frac{V\varepsilon_0}{R} \qquad \qquad E_{\text{surface}} = \frac{\sigma}{\varepsilon_0} = \frac{V}{R}$$



Capacitance, charge and potential

- For parallel plates, Q on plates is proportional to ΔV between them
 - For 2Q, you get 2E, and $2\Delta V$, for the same Δs
 - Proportionality means...

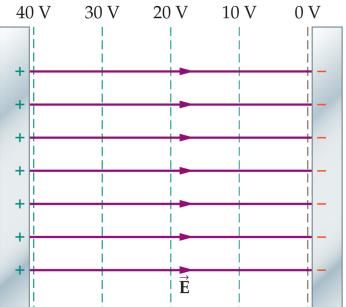
Q = CV

Define capacitance: $C = \frac{Q}{V}$

Units of capacitance: 1 farad = 1 F = 1 C/V

- Named after Michael Faraday

 $1 \ \mu F = 10^{-6} \ F; \ 1 \ nF = 10^{-9} \ F; \ 1 \ pF = 10^{-12} \ F$



We can also give k and ε_0 in units of farads -- sometimes handier: V= J/C = N-m/C, so k (units: N•m²/C²) \rightarrow V•m/C = m/F, and $\varepsilon \sim (1/k)$ $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m = 8.85 pF/m; $k = 8.99 \times 10^9$ m/F

Quiz 13

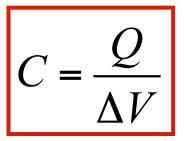
- "Equipotentials can never intersect" -- Why?
- A. If they intersected, that point in space would have 2 values of V at the same time!
- B. Field lines never intersect, and equipotentials are always perpendicular to field lines
- C. Neither A nor B are true
- D. Both A and B are true

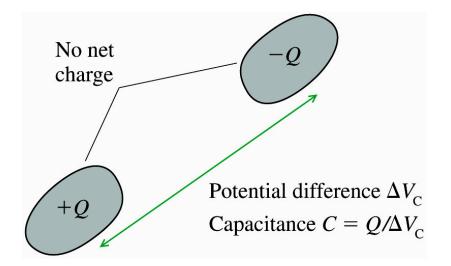
Quiz 13

- "Equipotentials can never intersect" Why?
- A. If they intersected, that point in space would have 2 values of V at the same time!
- B. Field lines never intersect, and equipotentials are always perpendicular to field lines
- C. Neither A nor B are true
- D. Both A and B are true

Not just for parallel plates

ANY two conducting electrodes holding equal and opposite Q will form a capacitor, regardless of their shape or arrangement.





Notice: Capacitance depends *only on the geometry* of the electrodes, *not* on their Q or potential difference at any time.

The same arrangement of electrodes located in a different place in space may have different V and Q, but has the same C.

C for Parallel Plate Capacitors

d

A

-Q

A

+Q

Common example of capacitors:

Parallel plate capacitor has equal and opposite charges on two plates of area A separated by a gap of width d.

Notice: E field is uniform, as long as you stay away from the edges

Assume we can "neglect edge effects" and take E to be uniform, (a)

Then:

 $\Delta V = -E\Delta s$ going in the direction of \vec{E}

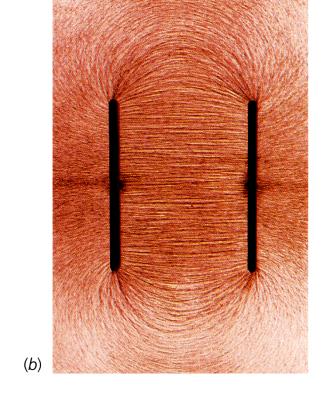
Then ΔV is negative as you go from + to – electrode

If we take +V = potential of the + electrode

then
$$\Delta s = -d \rightarrow V = \left(\frac{\sigma}{\varepsilon_0}\right)d = \left(\frac{Q}{A}\right)\frac{d}{\varepsilon_0}$$

$$C = \frac{Q}{V} = \frac{Q}{Qd / (\varepsilon_0 A)} = \varepsilon_0 \frac{A}{d}$$

Capacitance ~ Area/spacing



Example: Capacitance of a Parallel Plate Capacitor

A parallel-plate capacitor has square metallic plates of edge length of 10.0 cm separated by 1.0 mm.

- (a) Calculate the capacitance of the device.
- (b) If the capacitor is "charged up" to $\Delta V = 12 V$, how much charge must be transferred* from one plate to the other?

For capacitance problems, it is handy to express ε_0 in terms of farads:

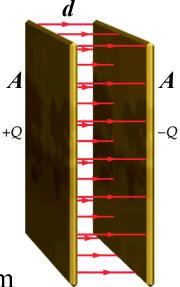
$$\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2) = 8.85 \text{ x } 10^{-12} \text{ F/m} = 8.85 \text{ pF/m}$$

$$C = \frac{\varepsilon_0 A}{d} = \frac{(8.85 \text{ pF/m})(0.10 \text{ m})^2}{(0.001 \text{ m})} = 88.5 \text{ pF}$$

$$C = \frac{\varepsilon_0 A}{d} = \frac{(8.85 \text{ pF/m})(0.10 \text{ m})^2}{(0.001 \text{ m})} = 88.5 \text{ pF}$$

$$Q = CV = (88.5 \text{ pF})(12 \text{ V}) = 1062 \text{ pC} = 1.06 \text{ nC}$$

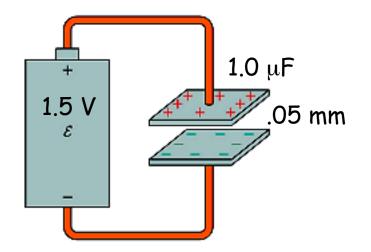
* How's it done? Work must be done on the charge to move it provided by some source of energy (e.g., a battery)



Example: Charging a Capacitor

The spacing between the plates of a 1.0 μF capacitor is 0.05 mm.

- (a) What must the surface area A of the plates be?
- (b)How much charge is on the plates if this capacitor is attached to a 1.5 V battery?

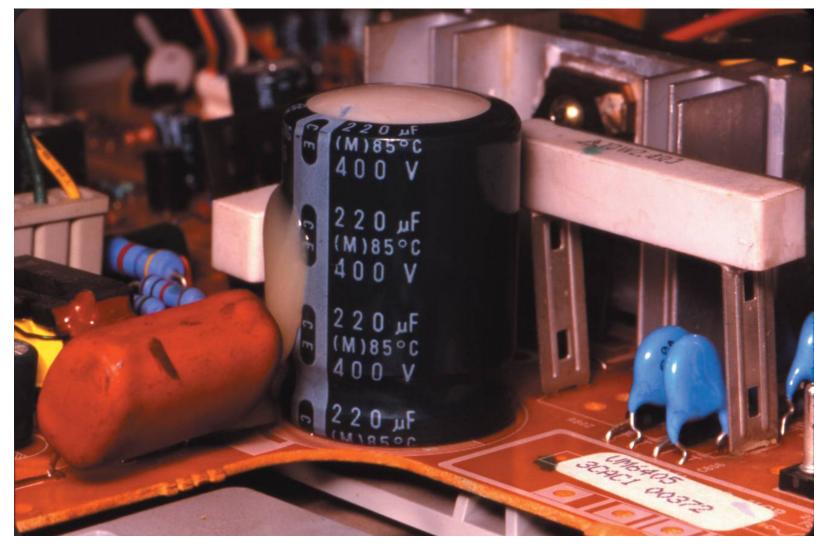


 $A = \frac{dC}{\varepsilon_0} = (5.0 \times 10^{-5} \text{ m})(1.0 \times 10^{-6} \text{ F})/(8.85 \times 10^{-12} \text{ F/m}) = 5.65 \text{ m}^2$

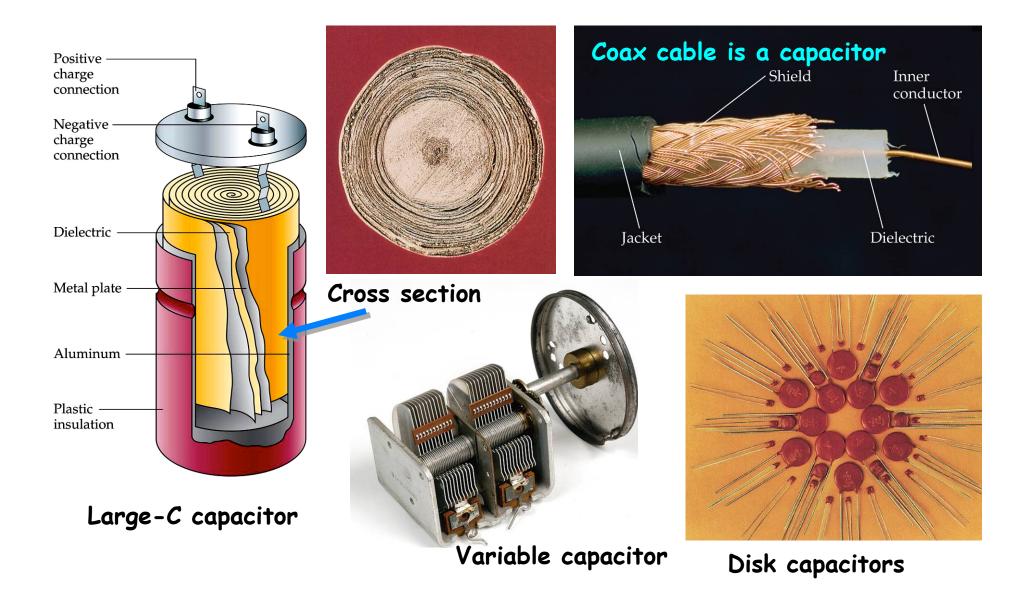
(Large surface area - how's it done in a small package?)

$$Q = C\Delta V_{\rm C} = (1.0 \times 10^{-6} \text{ F})(1.5 \text{ V}) = 1.5 \times 10^{-6} \text{ C} = 1.5 \ \mu\text{C}$$

Examples of Capacitors in electronic circuits



Real Capacitors

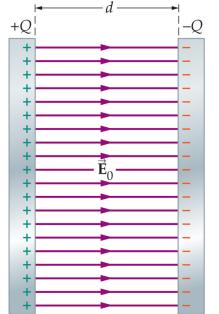


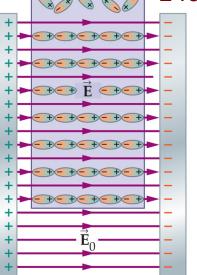
Dielectrics in capacitors

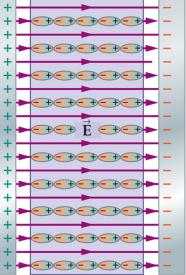
- For ideal capacitors we assumed vacuum between plates or air, which makes very little difference
- However if the insulator between plates is polarizable, there is a big difference
 - E field of separated charges on plates orients the polar molecules
 - Oriented atoms have their end toward + charged capacitor plate
 - Atoms' internal fields oppose E
 - Effective E between plates is reduced

Oriented atoms are attracted by electrodes: E force pulls slab in

If E between plates is reduced, $V = -E \Delta s \rightarrow$ V between plates is also smaller: Then C=Q/V \rightarrow larger C for same Q on plates







Dielectric constant

• Polarizable materials ("dielectrics") increase C compared to vacuum, for given geometry of capacitor:

$$C_0 = \frac{Q}{V_0}, \quad V_0 = E_0 d$$
, for vacuum between plates

with dielectric, $E_0 \rightarrow E = \frac{E_0}{\kappa}$, $\kappa = \text{dielectric constant}$

$$V = Ed = \frac{E_0}{\kappa}d = \frac{V_0}{\kappa} \Longrightarrow C = \frac{Q}{V} \longrightarrow C = \kappa \frac{Q}{V_0} = \kappa C_0$$

- Notice:
 - For an isolated capacitor (fixed charge already in place), V drops
 - If capacitor is connected to a battery (maintains constant V) the charge will increase to match the increased C

Substance	Dielectric constant, ĸ
Water	80.4
Neoprene rubber	6.7
Pyrex glass	5.6
Mica	5.4
Paper	3.7
Mylar	3.1
Teflon	2.1
Air	1.00059
Vacuum	1

Dielectric strength: breakdown

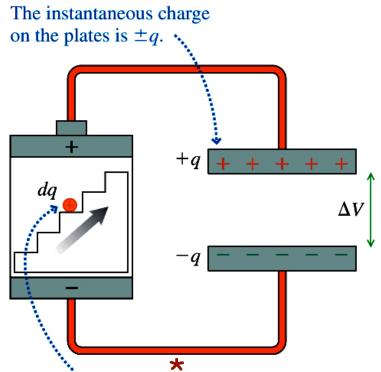
- We can't just keep stuffing charge into a capacitor:
 - At some V, the insulator breaks down
 - Breakdown is usually at some very high E field intensity
 - Air can handle ~3 million volts per meter (3000 volts/mm)
 - When you touch a light switch and feel a 1 mm spark:
 - Your body + light switch = capacitor
 - You have accumulated enough Q to make your half of the capacitor ~ 3000V higher potential than ground

Substance	Dielectric strength (V/m)
Mica	100×10^{6}
Teflon	60×10^{6}
Paper	16×10^{6}
Pyrex glass	14×10^{6}
Neoprene rubber	12×10^{6}
Air	3.0×10^{6}

Energy Storage in a Capacitor

In capacitors, charge is stored on electrodes with potential difference ΔV . It takes work to move charge against the E field represented by ΔV ! The first bit of charge is easy to move: for an uncharged capacitor, V=0 Thereafter each bit of charge takes more work: V grows linearly with total Q on the capacitor, since V=Q/C.

The stored charge represents the work done, in potential energy: $U = Q \Delta V$



Using calculus we find the total work done The charge escalator does work is $W_{TOTAL} = U_{\rm C} = \frac{1}{2}Q\Delta V_{\rm C}$

 $dq \Delta V$ to move charge dq from the negative plate to the positive plate.

 $C = \frac{Q}{\Delta V_{\rm C}} \rightarrow U_{\rm C} = \frac{1}{2}C\Delta V_{\rm C}^2 = \frac{Q^2}{2C}$

Or, without calculus: since V grows linearly with total Q, average V = $\frac{1}{2}$ Q/C, so total W = QV_{AVG} = $\frac{1}{2}Q^2/C$

* What's this "charge escalator"? A source of energy (e.g., a battery) that "lifts" charge through the potential difference (against E force)