Physics 115 General Physics II

Magnetic fields and forces

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule

		Mon		Monday, June 9, 2014	Today
	June 9	FINAL EXAN	1	2:30-4:20 p.m.	Comprehensive
	6-Jun	Fri	36	Last class - review	
	5-Jun	Thurs	35	Resonance, Applications	24.6
	3-Jun	Tues	34	AC circuits	24.4-24.5
	2-Jun	Mon	33	AC circuits	24.1-24.3
	30-May	Fri		EXAM 3 - Chapters 21,22,23	
	29-May	Thurs	32	Transformer	23.9-23.10
	27-May	Tues	31	Energy, RL circuits	23.4-23.8
	26-May	holiday		NO CLASS	
	22-May	Fri	30	Induced EMF, Applications	23.1-23.3
	22-May	Thurs	29	Magnetic Fields	22.6-22.7
	20-May	Tues	28	Magnetic Force	22.2-22 5
-	19-May	Non	27	Magnetism	22.1
	16-May	Fri	26	Circuits - Neurons	
	15-May	Thurs	25	RC circuits	21.6-21.7
	13-May	Tues	24	DC Circuits	21.5-21.8
	12-May	Mon	23	DC Circuits & Meters	21.5-21.8

Magnetic force on a moving charge

Electric current I = moving electric charges.

Ampere's experiment showed that a magnetic field exerts a force on a current \rightarrow moving charges.

(The exact form of the force relation was not discovered until later in the 19th century.)

Experiments show the force is :

...Proportional to q, its speed v, and B

...Depends on the relative directions of **B** and the velocity **v** of the moving charge: proportional to sine of the angle between them ...perpendicular to both **v** and **B**. Force on moving as

So, applying our usual procedure about proportionality:

$$F \propto qvB\sin\theta \Rightarrow F = q\left(\vec{v} \times \vec{B}\right)$$

Order matters! $\vec{v} \times \vec{B} = -\vec{B} \times \vec{v}$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

Last time

$$F = q\left(\vec{v} \times \vec{B}\right)$$

Magnetic Force on Moving Charges

Properties of the magnetic force:

- Only moving charges experience the magnetic force. There is no magnetic force on a charge at rest (v=0) in a magnetic field.
- 2. There is no magnetic force on a charge moving parallel (θ =0°) or anti-parallel (θ =180°) to a magnetic field.
- When there is a magnetic force, it is perpendicular to both v and B.
- 4. The force on a negative charge is in the direction *opposite* to vxB.
- 5. For a charge moving perpendicular to **B** (θ =90°), the magnitude of the force is **F**=|**q**|**vB**.

$$F = q\left(\vec{v} \times \vec{B}\right)$$

Units for B fields

- Magnetic force on a charged particle: F = qvB
- Define field strength B = F/qv (for v *perpendicular* to B)
 - Then units of B must be {N} / ({C}{m/s})
 - Notice denominator: ${C}{m/s} = {C/s}{m}=ampere-meter$
 - So units for B are N/(A•m): Special name assigned: tesla (T)
 - Named after Nikola Tesla (US, 1856-1943)
 - 1 T is a very intense B! Not handy for many applications
 - Obsolete CGS unit is still widely used: gauss (G)
 - One tesla = 10,000 gauss: 1 T = 10 kG

Examples:

- earth's field ~ 1/2 G
- bar magnet ~ 100 G
- Medical imaging $\sim 1.5 \text{ T}$

(>1 T fields require superconducting magnets)

Example 1: charged particle in a B field

- Send a particle with q = 1 mC with speed v=200 m/s into a uniform B field of 0.03T, parallel to v
- Force on particle:
 - Force depends on particle's speed v and q, but not m
 - B force is always perpendicular to v
 - Force = 0 because B || v
- Motion of particle
 - Uniform motion
 - a = 0
 - v = constant
 - No change in speed or direction
- $F = qvB\sin\theta$ $= (0.001C)(200m/s)(0.03T)(\sin(0^{\circ}) = 0)^{\circ}$

5/19/14

=0N

Example 2: charged particle in a B field

- Send a particle with q=1 mC with speed v=200 m/s into a uniform B field of 0.03T, now perpendicular to v
- Force on particle:
 - Force depends on particle's speed v and q, but not m
 - B force is always perpendicular to v IF NO OTHER FORCES, then
 - Path must be a circle: recall, circular motion \rightarrow a _ _ v
 - F_B does not change speed, only direction

$$F = qvB\sin\theta$$
$$= (0.001C)(200m/s)(0.03T)(\sin(90^{\circ}))$$
$$= 0.006N$$

Comparing effects of E and B fields

• In an E field

- Force is proportional to q
- Force is always parallel to field direction
- Force does not depend on speed
- Force does not depend on mass
- Force is never 0 unless q=0
- Force always changes speed of particle
 - if v is initially perpendicular to field, E will givit a parallel component
- In a B field
 - Force is proportional to q
 - Force is always perpendicular to field direction
 - Force does depend on speed
 - Force does not depend on mass
 - Force may be 0 even if q is not 0 (if v || B)
 - Force never changes speed of particle (always perpendicular to v)

Application: velocity selector

- If charged particle enters a region with both E and B, with B perpendicular to E
 - B force depends on q and speed : $|F_B| = qvB$
 - E force depends only on q: $|F_E| = qE$
- If we arrange so that directions of v, E, and B are x, y, z
 - Then for a + charge,
 - F_E is in +y direction
 - F_B is in -y direction
 - We can have net force =0 if $|F_E| = |F_B|$

$$qE = qvB \rightarrow v = E/B$$

Notice:

- q cancels out: works for any q
- Mass doesn't matter either
- Any particle with v=E/B has **a**=0
 - Travels in straight line at constant speed
 - All other v's are accelerated in y by E, deflected by B
 - So this arrangement = VELOCITY SELECTOR

Quiz 17

- A charged particle moves in a magnetic field **B** (perpendicular to its initial velocity)
- Then the *same* particle moves in an electric field **E** (also perpendicular to its initial velocity)

Comparing the two, in **both** cases:

- A. the particle is *accelerated*
- B. the particle's speed is unchanged
- C. the particle's speed changes
- D. More than 1 of the above is true
- E. None of the above are true

Quiz 17

- A charged particle moves in a magnetic field **B** (perpendicular to its initial velocity)
- Then the *same* particle moves in an electric field **E** (also perpendicular to its initial velocity)

Comparing the two, in **both** cases:

- A. the particle is *accelerated*
- B. the particle's speed is unchanged
- C. the particle's speed changes
- D. More than 1 of the above is true
- E. None of the above are true

Application: mass spectrometer

- Mass spectrometer = device to measure the mass of ionized atoms (or to separate different mass groups)
- Method: linear acceleration in **E** + circular motion in **B**
 - 1. Ionize atoms so they all have the same net q
 - 2. Accelerate ions through a fixed E field, over a distance d
 - Force depends only on q, so all masses see the same F_E
 - Acceleration $a=F_E/m$, so a is inversely proportional to m
 - Heavier ions experience smaller a
 - Their final speed v is smaller after leaving acceleration zone
 - 3. Now send ions into a uniform B field, perpendicular to v
 - B force depends only on speed v (all have same q)
 - Faster ions experience bigger force, but $a_B = F/m$
 - Heavier ions experience smaller acceleration
 - » Circular path will have larger radius
 - » Use radius of path to identify mass

Mass Spec: how it works

- Use heat or electron bombardment to ionize atoms 1_
- Use accelerator = uniform E field region to bring particles up 2. to speed v_0 $E\Lambda s = \Lambda V$
 - v_0 depends upon their mass: $a = F_F/m = qE/m$ $\Delta s = length \ of \ E \ region$

3. Use velocity selector to get only atoms with $v_0 = v$ Then all ions have same q and v $KE = \frac{1}{2}mv_0^2 \rightarrow v$ In uniform B region: Be F_{B} is perpendicular to v $F_{\rm B}$ acts like a central force

Recall from PHYS 114: Circular path requires

$$F_C = \frac{mv^2}{r} = qvB$$

$$F_C = qvB \Longrightarrow r = \frac{mv}{qB}$$

Ionization

Accelerating voltage applied

After ionization, acceleration, and selection of single velocity particles, the ions move into a mass spectrometer region where the radius of the path and thus the postion on the detector is a function of the mass.

Example: The Radius of Motion in a mass spectrometer

Application: separating *isotopes* of uranium

- **Isotopes** = varieties of an element with different atomic mass, due to different number of *neutrons* in nucleus
 - Same number of e's and protons: same atomic number
 - All chemical properties are identical: can't be separated by the wonders of chemistry! Need a physical method...

Example (from WW-II Manhattan project): mass specs at Berkeley

$$m\binom{235}{U} = 3.90 \times 10^{-25} kg \text{ (usable as nuclear fuel)} \\ \textcircled{m}(238U) = 3.95 \times 10^{-25} kg \text{ (99\% of natural U)} \\ For mass spec with entry $v = 1.05 \times 10^5 m/s$, and $B = 0.75T$, what is $d = \text{distance between endpoints?} \\ r_{235} = \frac{mv}{qB} = \frac{(3.90 \times 10^{-25} kg)(1.05 \times 10^5 m/s)}{(1.6 \times 10^{-19} C)0.75T} = 34.1cm \\ \textcircled{m}(1.6 \times 10^{-19} C)0.75T \\ d = 2r = 1.0cm \\ 5/19/14 \\ \textcircled{m}(235U) = 3.95 \times 10^{-25} kg)(1.05 \times 10^5 m/s) \\ = 34.6cm \\ \textcircled{m}(27235) = 34.6cm \\ \textcircled{m}(27$$$