Physics 115 General Physics II

Session 29

Magnetic forces, Coils, Induction

- R. J. Wilkes
- Email: phy115a@u.washington.edu
- Home page: http://courses.washington.edu/phy115a/

Lecture Schedule

	Mon		Monday, June 9, 2014	Т	oday
June 9	FINAL EXAN	1	2:30-4:20 p.m.	Comprehensiv	ve
6-Jun	Fri	36	Last class - review		
5-Jun	Thurs	35	Resonance, Applications	24.6	
3-Jun	Tues	34	AC circuits	24.4-24.5	
2-Jun	Mon	33	AC circuits	2424.3	
30-May	Fri		EXAM 3 - Chapters 21,22,23		
29-May	Thurs	32	Transformer	23.9-23.10	
27-May	Tues	31	Energy, RL circuits	23.4-23.8	
26-May	holiday		NO CLASS		
22-May	Fri	30	induced EiviF, Applications	23.1-23.3	
22-May	Thurs	29	Magnetic Fields	22.6-22.7	
20-May	Tues	28	Magnetic Force	22 2-22.5	
19-May	Mon	27	Magnetism	22.1	
16-May	Fri	26	Circuits - Neurons		
15-May	Thurs	25	RC circuits	21.6-21.7	
13-May	Tues	24	DC Circuits	21.5-21.8	
12-May	Mon	23	DC Circuits & Meters	21.5-21.8	

Announcements

- Monday = holiday: no class!
- Exam 3 is next Friday 5/30
 - Same format and procedures as previous exams
 - If you took exams with section B at 2:30, do so again
 - Covers material discussed in class from Chs. 21, 22, and parts of 23 covered by end of class on Tuesday;
 - we will skip section 22-8, magnetism in matter
 - Practice questions will posted next Tuesday evening, we will review them in class Thursday

Example: one long straight wire with current I

- Choose circular path of radius R centered on wire, in plane perpendicular to wire
 - Symmetry: B must be constant on path (constant r)
 - RHR says it points counterclockwise
 - Sum of BAL along closed path = B (circumference of circle) : $\sum_{CIRCLE} B_{||}\Delta L = B \sum_{CIRCLE} \Delta L = 2\pi r B$ $\sum_{PATH} B_{||}\Delta L = 2\pi r B = const(I_{ENCLOSED}) = \mu_0 I$ $B = \frac{\mu_0 I}{2\pi r}$ Closed path P

New constant: pronounced "mu-naught" or "mu-zero"

"permeability of free space" (analogous to epsilon-0 for E)

$$\mu_0 = 4\pi \times 10^{-7} \left(T \cdot m/A \right)$$

Force between parallel wires

 Now we can understand the wire pinch/spread demonstration: each wire sets up a B field that applies a force on the other

B field of a current loop

- Field due to a current loop:
 - Apply RHR to small segment of wire loop
 - Near the wire, B lines are circles
 - Farther away, contributions add up
 - Superposition
 - Higher intensity at center of loop
 - Lower intensity outside
 - Contributions from opposite sides of loop oppose each other
 - Looks like bar magnet's field
 - No accident: permanent magnet is array of tiny current loops, at the atomic level
 - Force between separate loops is like interaction between bar magnets

"It can be shown": B at center:

$$B_{CENTER} = \frac{\mu_0 I}{2R}$$

coil of N loops: $B_{CENTER} = \frac{N\mu_0 I}{2R}$

Array of loops = "solenoid" coil

- Wind a coil that is a long series of loops
 - Field contributions add up (superposition), same I in all loops
 - Result: uniform intense B inside, weak B outside
 - Handy device commonly used to make uniform B field zones

Solenoids for Magnetic Resonance Imaging (MRI)

- MRI: hydrogen nuclei = protons \rightarrow magnetic dipoles
 - Put them in a strong uniform B field and they align
 - Just the job for a solenoid coil ("magnet" in diagram below)
 - Then tickle them with radio waves of just the right frequency, and they radiate: easily detected and analyzed
 - Use MRI to image soft tissues (invisible to x-rays)

BTW: how to get *I* into a superconducting loop?

- Superconducting magnets are closed loops
 - SuperC: "R=0" so I flows "forever" (actually: R ~ $10^{-9} \Omega$)
 - First you have to get *I* circulating in the loop
 - Trick: have a heater that makes part of the SC wire "normal"
 - Acts like a resistor large R compared to cold SC wire!
 - Attach DC power supply
 - Turn on heater: I goes through L
- L=magnet coil $R_s = R$ of SC wire when warm $R_d = cold R$ of SC wire: $10^{-9} \Omega$
- Turn off heat: $R_s \rightarrow 0$: closed loop

Quiz 19

- An electron beam in a vacuum tube goes into the screen, as shown (that is the electrons are moving into the screen)
- What is the direction of the B field due to the electron beam, at point P?
- A. Up
- B. Down
- C. Right
- D. Left
- E. Insufficient info to tell

Ρ•

electron beam

 \bigotimes

RHR says clockwise, so B points up at P for conventional current - but the electrons have **negative** q, so opposite: down

Electromagnetic induction: induced EMF

- Oersted observed: current affects compass: I causes B
- Michael Faraday (Britain, 1791-1867) asked
 - Does the opposite happen? Can magnetic field cause a current?
 - Observation: yes, current flows but only while B is changing
 - Bar magnet + coil: I=0 when stationary, I > 0 when moving
 - Moving magnet \rightarrow field in coil is increasing or decreasing
 - Direction of change \rightarrow direction of current in loop

– Induced current \rightarrow must be an induced EMF to make charges flow

Magnetic flux through a wire loop

- Faraday's conclusions:
 - EMF is induced in wire loop only when magnetic flux through loop changes
 - Same idea as electric flux: how many field lines pass through loop
 - Change in flux can be due to changing B intensity and/or direction
 - As with electric flux:
 - fis max when loop's area is
 perpendicular to B, 0 when parallel
 - Define A vector as normal to loop area, angle θ between A and B

$$\Phi_{B} = \vec{B} \cdot \vec{A} = BA \cos \theta$$

Units: $\Phi_{B} = [T][m^{2}] = 1$ weber (Wb)

Faraday's Law of Induction

• Induced EMF is related to **rate of change** of flux

$$\mathcal{E} = -\frac{\Delta \Phi_B}{\Delta t} = -\frac{\Phi_{FINAL} - \Phi_{INITIAL}}{\Delta t} \text{ for 1 loop}$$
$$\mathcal{E} = -N\frac{\Phi_{FINAL} - \Phi_{INITIAL}}{\Delta t} \text{ for coil of N loops}$$

- The minus sign is important:
 - Lenz's Law: induced current flows in the direction that makes its B field oppose the flux change that induced it

Direction of I_{INDUCED} : Lenz's Law

Faraday:Induced current in a closed conducting loop only if the magnetic flux through the loop is **changing**, and **emf** is proportional to the **rate of change**.

Lenz's Law (1834): The direction of the induced current is such that its magnetic field opposes the change in flux.

Example: push N-seeking end of a bar magnet into a loop of wire:

B flux through the loop points **downward** and is **increasing** $\vec{B}_{induced}$ Induced \vec{B} To make a B field that points **upward** the induced current must be counterclockwise (by RHR)

Induced I in the

loop must make

points **upward**,

as if to **oppose**

the increasing

flux in the loop

Current meter

S

Heinrich Lenz

(1804 - 1865)

a B field that

Lenz's Law : reverse the previous process?

Suppose the bar magnet's N end is at first inside the loop and then is removed. The B field in the loop is now **decreasing**, so induced current is in the **opposite direction**, trying to keep the field constant (adds to the decreased external field)

