Physics 115 General Physics II

- R. J. Wilkes
- Email: phy115a@u.washington.edu

Lecture Schedule

	Mon Monday, June 9, 2014					
	June 9	FINAL EXAN	1	2:30-4:20 p.m. Comprehens		ive
	6-Jun	Fri	30	Last class - review		Today
<	5-Jun	Thurs	35	Resonance, Applications	24.6	
	3-Jun	Tues	34	AC circuits	24 4-24.5	
	2-Jun	Mon	33	AC circuits	24.1-24.3	
	30-May	Fri		EXAM 3 - Chapters 21,22,23		
	29-May	Thurs	32	Transformer	23.9-23.10	
	27-May	Tues	31	Energy, RL circuits	23.4-23.8	
	26-May	holiday		NO CLASS		
	22-May	Fri	30	Induced EMF, Applications	23.1-23.3	
	22-May	Thurs	29	Magnetic Fields	22.6-22.7	
	20-May	Tues	28	Magnetic Force	22.2-22.5	
	19-May	Mon	27	Magnetism	22.1	
	16-May	Fri	26	Circuits - Neurons		
	15-May	Thurs	25	RC circuits	21.6-21.7	
	13-May	Tues	24	DC Circuits	21.5-21.8	
	12-May	Mon	23	DC Circuits & Meters	21.5-21.8	

Announcements

Please pick up class evaluation forms at front of room – pencils available if needd

Formula sheet(s) for final exam are posted in slides directory

•Final exam is 2:30 pm, Monday 6/9, here

- 2 hrs allowed, (really, 1.5 hr needed),
- Comprehensive, but with extra items on material covered after exam 3
- Usual arrangements
- I will be away all next week, Dr. Scott Davis will be your host
- Homework set 9 is due tomorrow, **Friday** 6/6, 11:59pm

Reminder: Grading scheme

- 1. Midterm Exams: sum of best 2 out of 3 midterm exams, max = 200
 - We must rescale midterm 2 scores (exams 1 and 3 had very similar averages and standard deviations):
 100s remain 100s, all other scores will be scaled:
 Z=(your score average)/std.dev, [original avg was 77, SD=19]
 new exam 2 score = adjusted avg + SD*Z = 67 + 18*Z
 (So new exam scores will have average 67 and SD=18)
- 2. Clicker Quizzes: sum of **best** 10 out of 21 quizzes, max = 30
 - 0 pts if no entry, 1 if wrong answer, 3 if correct
- 3. Webassign Homework sets: sum of best 7 out of 9, max = 700
- 4. Final sum (max 100 pts) = 100pts*

[0.4*(exams/200) + 0.3*(final/150) + 0.15*quiz/30 + 0.15* HW/700]

Course grade is based on this sum. Class average will be 3.0 Sums and grades will be posted on Catalyst gradebook next week

Last time The Series RLC Circuit

Now add a resistor in series with the inductor and capacitor. The same current *i* passes through all of the components.

Fact: The C and L reactances create currents with \pm 90° phase shifts, so their contributions end up 180° out of phase - tending to cancel each other. So the net reactance is $X = (X_L - X_C)$

$$I = \frac{\mathcal{E}_{0}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}} = \frac{\mathcal{E}_{0}}{\sqrt{R^{2} + (\omega L - 1/\omega C)}}$$

 $\sqrt{R^2 + (X_L - X_C)^2} = Z$ Z = "Impedance" : resistance and/or reactance

$$\boldsymbol{\mathcal{E}}_{0}^{2} = V_{R}^{2} + (V_{L} - V_{C})^{2} = \left[R^{2} + (X_{L} - X_{C})^{2}\right]$$
6/5/14

 $I^{2} \begin{bmatrix} At resonant \omega = 1/\sqrt{[LC]} : \\ X_{L} = X_{C} \rightarrow Z = minimum = R \end{bmatrix}$

Reactance and resistance: f dependence

Resistance R does not depend on frequency: R = constant

Capacitive reactance is inversely proportional to frequency: $X_C = 1/(\omega C)$

Inductive reactance is proportional to frequency: $X_{I} = \omega L$

Frequency

Phase relationships in AC circuits

Useful picture to help understand phase relationships:

For AC circuit with only R,

V(t)=V_{max} sin(ω t), where ω =2 π f

 $(\omega = radians/s, f=cycles/s)$

Imagine V (or I) as a vector of length V_{max} that rotates (convention: CCW direction) around the z, axis with angular speed ω .

Then the instantaneous V(t) at any time t is the projection of this vector on the y-axis:

 $V(t)=V_{max} \sin(\omega t)$

For R only, I is *in phase* with V, so I(t) = $I_{max} sin(\omega t)$,

where $I_{max} = V_{max} / R$

Phasor diagrams

Copyright © 2007 Pearson Prentice Hall, Inc.

6/5/14

Recall: what phase lag means

(a) I and V inn phase, (b) V lags I by 45deg, (c) by 90 deg

Again we have 2 voltage phasors to consider, but:

1. Voltage across R = I R (in phase with I)

2. Voltage across L = I X_L (90deg lead wrt I)
impedance
$$Z=\sqrt{[R^2 + X_L^2]}$$

The voltage across the source is V(t)=I(t)Z
Combine V_L and V_R (add phasors as *vectors*)
Result: we find V(t) leads I(t) by phase angle ϕ where once again
tan ϕ =(reactance/resistance) = (X_L / R) OR: cos ϕ = (R/Z)

Why do this? Power factor

Phasor diagrams are useful for analyzing power in AC circuits:

Recall: P(t) = I(t) V(t) and $P_{avg} = I_{RMS}^2 R$ (*Reactances* do not dissipate energy, only R does) Distinguish between *dissipated power* in watts, and "volt-amperes" = effective *energy delivered to circuit* even if energy is not used.

 $P_{avg} = I_{RMS} (V_{RMS} / Z) R = I_{RMS} V_{RMS} (R/Z) = I_{RMS} V_{RMS} \cos \phi$

 \rightarrow Observing the phase lead or lag of V vs I tells us the fraction of Z that is resistive.

 $\cos \phi$ = the power factor (PF)

 $\begin{array}{l} \mathsf{PF=0} \rightarrow \mathsf{R=0, Z \ is \ only \ reactance; \ no \ power \ consumed \ (but \ current \ and \ voltage \ must \ be \ supplied) \\ \mathsf{PF=1} \rightarrow \ \mathsf{R=Z, \ purely \ resistive} \ (either \ no \ reactances, \ or \ \mathsf{X_L}=\mathsf{X_C}) \\ \mathsf{PF} \ in \ between: \ circuit \ seen' \ by \ \mathsf{EMF} \ source \ is \ partially \ reactive \end{array}$

6/5/14