Ch. 24 practice questions Will be discussed in class Friday 6/6

- 1) A coil with a self-inductance of 6.0 H is connected to a dc source through a switch. As soon as the switch is closed at t = 0 s, the rate of change of current is 2.0 A/s. What is the emf induced in this coil at t = 0 s?
- A) 6.0 V
- B) 3.0 V
- C) 12 V
- D) 1/3 V
- E) 0 V

- 2) Figure above shows a simple ac circuit composed of a capacitor connected across the terminals of an ac generator. If the frequency (in Hz) of the generator is doubled, what happens to the capacitive reactance of the capacitor?
- A) It increases by a factor of 4.
- B) It increases by a factor of 2.
- C) It increases by a factor of $\sqrt{2}$.
- D) It decreases by a factor of 2.
- E) It decreases by a factor of 4.
- 3) In a series *RLC* circuit, the values of the inductance and capacitance are both doubled. In comparison with the resonance frequency of the original circuit, the new resonant frequency will be
- A) the same as before.
- B) reduced to one-half the original value.
- C) reduced to one-quarter the original value.
- D) increased by a factor of two.
- E) increased by a factor of four.

4) A generator produces EMF = 100 volts RMS and is connected to an inductor with L= 200 mH. The current I = 2 amperes RMS. What is the frequency of the EMF, in Hz?

- A) 40 Hz
- B) 250 Hz
- C) 160Hz
- D) 60 Hz
- E) none of the above

reactance:
$$X_L = \omega L = 2\pi f L$$

current:
$$I = V / X_L \rightarrow 2A = 100V / \left[2\pi f \left(0.20H \right) \right]$$

$$f = \frac{100V}{2\pi (0.20H)(2A)} = 39.7Hz$$