$$g \approx 9.8 \text{ m/s}^2$$
 $\rho_{\text{water}} \approx 1000 \text{ kg/m}^3 = 1 \text{ gram/cc} = 1 \text{ kg/liter}$ ρ_{aij} = 1.29 kg/m³ Atmospheric Pressure $\approx 101.3 \text{ kPa}$

$$\eta_{\mathrm{water}} \approx 10^{-3} \; \mathrm{Pa \; s} \qquad \eta_{\mathrm{blood}} \approx 3 \; 10^{-3} \; \mathrm{Pa \; s} \qquad \qquad V_{\mathrm{cube}} = \mathrm{L}^3$$

Circle:
$$A = \pi r^2$$
 Sphere: $V = \frac{4}{3}\pi r^3$ 1 liter = 1000 cc = 10^{-3} m³

Density = Mass/Volume
3
 Pressure = Force/Area weight = mg

 $Work = Force \ x \ Distance$ $Power = Force \ x \ Velocity$

pressure = P_{ATM} + ρgh BF=weight of water displaced

Flow rate
$$=A_1v_1=A_2v_2$$
 $P+\frac{1}{2}\rho v^2+\rho gh={
m constant}$

Flow rate =
$$\frac{\Delta V}{\Delta t} = \frac{\pi R^4}{8\eta L} \Delta P$$

$$T_C = \frac{5}{9} (T_F - 32)$$
 $T_F = \frac{9}{5} T_C + 32$ $T = (T_C + 273.15) K$

$$\Delta L = \alpha L_0 \Delta T$$
 $\Delta V = \beta V_0 \Delta T$ $\beta \approx 3c$

$$1 \text{ calorie} = 4.186 \text{ J}$$
 $1 \text{ Calorie} = 1000 \text{ calories}$

$$C = \frac{Q}{\Delta T} \qquad c = \frac{Q}{m\Delta T}$$

$$c_{\rm water} = 4186~{\rm J/(kg~K)}~=~1~{\rm calorie/(gm~K)}$$

$$P = e\sigma A T^4$$
, $P_{NET} = e\sigma A (T^4 - T_s^4)$ $\sigma = 5.67 \text{ x } 10^{-8} \text{ W/(m}^2 \text{K}^4)$

Copper conductivity $k_{C_{II}} = 395$ (W/m·K) Fusion/melting: $\Delta Q=mL$

$$Q=kA\frac{\Delta T}{L}t$$

$$PV = NkT$$
 $k = 1.38 \ 10^{-23} \ \mathrm{J/K}$ $N = \text{number of molecules}$

$$PV=nRT$$

$$R=8.31~{\rm J/(mol~K)} \qquad n={\rm ~number~of~moles}$$

$$N_A=6.022~10^{23}~{\rm molecules~per~mole}$$

Water: heat of fusion: $33.5 \ 10^4 \ \text{J/kg} = 80 \ \text{calories/gm}$

Water: heat of vaporization: $22.6 \ 10^5 \ \mathrm{J/kg} = 540 \ \mathrm{calories/gm}$

$$\left(\frac{1}{2}mv^2\right)_{\text{ave}} = \frac{3}{2}kT \qquad \qquad U = \frac{3}{2}NkT = \frac{3}{2}nRT$$

```
1<sup>st</sup> Law
                      \Delta U = O - W
2<sup>nd</sup> Law
                For a closed system \Delta S > 0 or = 0
Constant P process Work = P \Delta V
                       Work = nRT ln (V_f/V_i)
Isothermal process
                                        U = 3/2nRT = 3/2NkT
Ideal Gas
                   PV = nRT = NkT
k_B = 1.38 \text{ X } 10^{-23} \text{ J/K}
                           R = 8.31
Latent Heat L <sub>steam</sub> = 2.26 \times 10^6 \text{ J/kg}
                                          Q = mL
For reversible heat engines (Carnot) efficiency = 1 - Q_c/Q_h = 1 - T_c/T_h
        Q_h = Q_c + W
COP for Heat Pump = Q_h / W
COP for Refrigerator = Q_c / W
             \Delta S = \Delta Q/T at constant T
Electron charge 1.6 X 10<sup>-19</sup> C Electron mass 9.11 X 10<sup>-31</sup> kg
Permittivity of Vacuum \varepsilon_0 = 8.85 \times 10^{-12} \text{ k} = 1/(4\pi\varepsilon_0) \text{ F}_{12} = \text{kQ}_1 \text{Q}_2/\text{R}^2
Energy density in the Electric field is u = \epsilon_0 E^2 / 2 J/m^3
Capacitance for a parallel plate capacitor with vacuum \epsilon_0 A/d Farads
Electric flux \Phi = E A \cos\theta
Gauss's Law Total Electric Flux through closed surface = Q / \epsilon_0
Electric field E = -\Delta V/\Delta s Capacitor Law: O = CV
                                      E = k O/R^2, k = 8.99 \times 10^9
Electric field due to point charge
Electric Potential due to point charge V = kQ/R
Work done on charge = -Q \Delta V
Electric Current I = \Delta Q/\Delta t = Rate of flow of electric charge
Ohm's Law
                    V = IR
R = \rho L/A , \rho resistivity
Series R = R_1 + R_2 + \dots Parallel R^{-1} = R_1^{-1} + R_2^{-1} + \dots
Q = CV
Series C^{-1} = C_1^{-1} + C_2^{-1} + \dots Parallel C = C_1 + C_2 + \dots
Charging a capacitor in an RC circuit
Q(t) = Q_{max}(1 - e^{-t/\tau}) \tau = RC, Q_{max} = max charge on C (at t=infinity)=C\mathcal{E}
F_B = q v B Sin(\theta) [use RHR], F_E = q E (on a charge q)
Work = q V
Kinetic energy for mass m, speed v = \frac{1}{2} mv^2
F_B = I I B Sin(\theta) (on wire with length I)
Torque on coil of N loops = N I B A Sin(\theta)
Force per unit length between parallel currents = \mu_0 I_1 I_2 / 2\pi D
D is distance between wires
Magnetic Permeability of Vacuum \mu_0 = 4 \pi \times 10^{-7}
Power = VI
                    Sum of Voltage Drops around any Loop = Zero
Loop
         Rule
Junction Rule
                     Sum of Currents In = Sum of Currents Out
                                                                             at any junction
Magnetic field at distance R from a long straight wire with current I
B = 2 \times 10^{-7} I/R
Cyclotron formula for charged particle moving perpendicular to uniform field B
R = mv/(qB), R radius of the circular trajectory
```

```
Solenoid field B = \mu_0 N I / l (N turns over length l) 
 Energy in inductor U=LI² / 2, field energy density u_B = B² / (2 \mu_0), 
 Transformers: (V_2 / V_1) = (N_2 / N_1) = (I_1 / I_2) 
 Inductance L = \Delta\Phi_m / \Delta I Inductance of solenoid (N turns, length l): L= \mu_0 N² A / l 
 \tau = L/R 
 V = V_{max} sin ( \omega t), V _{RMS} = V_{max} / \sqrt{2}, I _{RMS} = V _{RMS} / X , X_C = 1 /(\omega C) , X_L= \omega L 
 Z= \sqrt{[R^2 + (X_L - X_C)^2]}, resonant freq \omega_0 = 1 /\sqrt{[LC]}
```

scratch paper