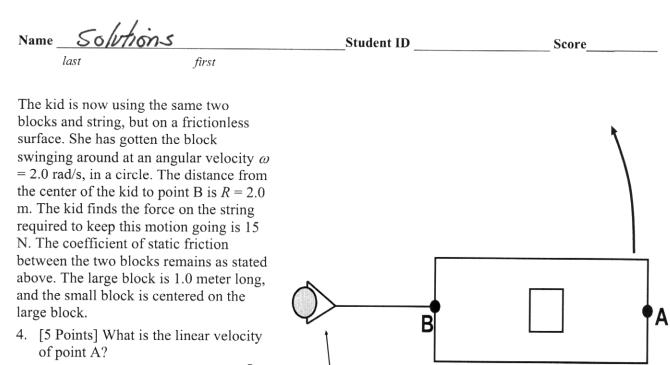
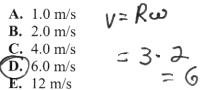
Solutions Name Student ID Score last first Part I. [25 points] The kid is trying to pull a block of mass M = 35 kg along a horizontal surface with a coefficient of static friction  $\mu_s$ and kinetic friction  $\mu_k = 0.05$ . 1. [5 Points] The kid needs to pull with a force Μ of at least 30 N to get the block to move. What is the value of  $\mu_s$ ? **A.** 0.083 **B.** 0.087 **C.** 0.091  $F = \mu_s N = 30N$ =  $M_s M_g = 50 M_s = \frac{30}{35.9.8}$ = 0.087 **D.** 0.31 **E.** 3.4 2. [5 Points] The kid continues to pull with a force of 30 N after the block starts moving. What is the magnitude of the acceleration of the block? 30 Fr **A.**  $0.0 \text{ m/s}^2$ **b**  $0.37 \text{ m/s}^2$ **c.**  $0.49 \text{ m/s}^2$  $M_{a} = \Sigma F = 30N - M_{R}N$  $a = \frac{30N - 0.05 - 9.8 - 35}{3.5} = 0.367 \text{ m/s}^{2}$ **D.**  $0.68 \text{ m/s}^2$ **E.**  $0.85 \text{ m/s}^2$ A small block of mass m=5 kg is now placed on top of the large block. The coefficients of static and kinetic


friction between the bottom block and top block are  $\mu_s = 0.08$  and  $\mu_k = 0.04$ , respectively.


3. [5 Points] With what magnitude force does the kid need to pull to cause the small block to just start to slip?

Physics 121C, Autumn 2002

A. B. C.

Final Exam, page 2





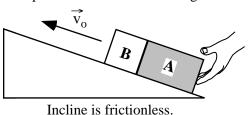
Top View

5. [5 Points] The upper block is slipping. What is the force due to friction on the small block by the large block?

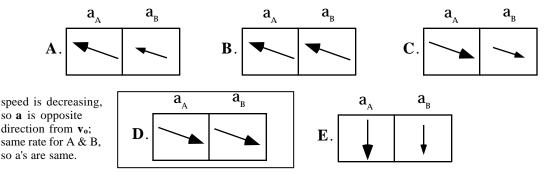
The Kid

(A) 2.0 N Shipping  $F = \mu_{R} N = 0.04 \cdot 5.9.8$ B. 4.0 N C. 14 N D. 27 N E. 49 N

Physics 121C, Autumn 2002


| Name <u>Solutions</u> <u>Student ID</u> <u>Score</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part II. [25 Points] A simple pendulum has a period of 1.8 s, and swings only at small angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6. [5 points] Its mass is doubled. What is its period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A. $0.90 \text{ s}$<br>B. $1.3 \text{ s}$<br>C $1.8 \text{ s}$<br>D. $2.5 \text{ s}$<br>E. $3.6 \text{ s}$<br>Moss does not<br>$T = 2 \overline{T} / \frac{L}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7. [5 points] Its length is doubled. What is its period now?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| now?<br>A. 0.90 s $L \Rightarrow 2L \text{ SO } T \Rightarrow \sqrt{2}T$ $M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c} \mathbf{L} & 1.5 \text{ s} \\ \mathbf{C} & 1.8 \text{ s} \\ \mathbf{D} & 2.5 \text{ s} \\ \mathbf{E} & 3.6 \text{ s} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The original pendulum is released from rest at an angle $\theta = 13^{\circ}$ from the vertical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8. [5 points] What is its maximum angular acceleration?<br>A 0.40 rpd/s <sup>2</sup> $\mathcal{P} = T \mathcal{A}$ $\mathcal{P} = I \mathcal{A}$ $\mathcal{P} = \mathcal{F} : \mathcal{T} = \mathcal{L} \mathcal{M} \mathcal{G} : \mathcal{T} :$ |
| 8. [5 points] What is its maximum angular acceleration?<br>A. 0.40 rad/s <sup>2</sup><br>B. 0.73 rad/s <sup>2</sup><br>C. 1.4 rad/s <sup>2</sup><br>D 2.7 rad/s <sup>2</sup><br>E. 5.5 rad/s <sup>2</sup><br>T = DA<br>T = TA<br>T = TA<br>T = TA<br>T = TA<br>$T = ML^2$<br>$T = LMgsin\Theta$<br>$T = ML^2$<br>$T = LMgsin\Theta$<br>$T = ML^2$<br>$T = 2.17/s^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9. [5 Points] The kinetic energy when the pendulum is at the bottom of the arc is 10 J. What is the mass of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| the pendulum bob (M)? $E = \iint qh = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| E. 5.5 rad/s <sup>2</sup><br>9. [5 Points] The kinetic energy when the pendulum is at the bottom of the arc is 10 J. What is the mass of the pendulum bob (M)?<br>A. 1.6 kg<br>B. 4.1 kg<br>C. 9.7 kg<br>D. 18 kg<br>E = Mg h z 100<br>$L = \frac{1}{\sqrt{7}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{7}} \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D. 18 kg SO $E = mg L(1 - 0.05C) = 2/L^2 - (1 - 0.05C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The original pendulum is taken to a planet where $g = 16 \text{ m/s}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10. [5 points] What is its period on that planet? $= 49.5 kg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A. 1.1 s<br>B. 1.4 s<br>C. 1.8 s<br>D. 2.9 s<br>E. 7.2 s<br>$g \rightarrow g'$ $T' = 2\pi \sqrt{\frac{L}{g'}}$<br>$g \rightarrow g'$ $T' = 2\pi \sqrt{\frac{g'}{g'}}$<br>$g \rightarrow g'$ $T' = 1.4 s$<br>$= \sqrt{\frac{g}{g}}$ $T' = \frac{1.4 s}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $=\sqrt{\frac{3}{g}}, T = \frac{1}{16}\sqrt{\frac{1}{16}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Physics 121C, Autumn 2002


Final Exam, page 4



Part III. [25 points] Two blocks move on a frictionless incline with initial speed v<sub>o</sub>, as shown, while a hand pushes with constant force parallel to the incline. The blocks are moving up the incline and slowing down. The mass of block A is greater than the mass of block B.



11. [5 pts] Choose the correct acceleration vectors for blocks A and B.



Over a short time interval, the blocks have moved up the ramp a distance d.

12. [4 pts] Is the work done on block A by the hand *positive, negative,* or *zero?* 

**A**.  $W_{\text{on A by hand}} > 0$ **B**.  $W_{\text{on A by hand}} < 0$  Force on A by hand is same direction as displacement of A

**C**. 
$$W_{on A by hand} = 0$$

**D**. This work does not exist

**E**. There is not enough information to answer.

13. [4 pts] Is the work done on the hand by block A *positive, negative,* or *zero?* 

A. 
$$W_{\text{on hand by }A} > 0$$

**B**.  $\overline{W_{\text{on hand by }A} < 0}$   $F_{\text{on hand by }A}$  is opposite direction of displacement of hand (Newton's third law) **C**.  $W_{\text{on hand by }A} = 0$ 

- **D**. This work does not exist
- **E**. There is not enough information to answer.
- 14. [4 pts] Is the absolute value of the work done on block A by the hand greater than, less than, or equal to the absolute value of the work done on the hand by block A?

**A**. 
$$W_{\text{on A by hand}} > W_{\text{on hand by A}}$$

**B.**  $W_{\text{on }A \text{ by hand}} < W_{\text{on }hand \text{ by }A}$  **C.**  $W_{\text{on }A \text{ by hand}} = W_{\text{on hand by }A}$  Newton's 3<sup>rd</sup> law:  $F_{\text{on hand by }A}$  is same as  $F_{\text{on }A \text{ by hand}}$ ; and  $\Delta x$  is same.

**D**. There is not enough information to answer.

15. [4 pts] Is the net work done on block A (i.e., the sum of the works by all forces) positive, negative, or zero?

$$\mathbf{A.} \quad \underline{\mathbf{W}}_{\text{net on A}} > \mathbf{0}$$

- **B**.  $\overline{W_{\text{net on }A} < 0}$  A is slowing down, so  $\Delta KE < 0$ ; by work-energy,  $W_{\text{net}} = \Delta KE$ **C**.  $W_{\text{net on }A} = 0$
- **D**. There is not enough information to answer.
- 16. [4 pts] Is the absolute value of the net work done on block A greater than, less than, or equal to the absolute value of the net work done on block B?

 $\left| \left| W_{\text{net on } A} \right| > \left| W_{\text{net on } B} \right| \right| W_{\text{net on } B} \right| W_{\text{net}} = \Delta KE = 1/2 \ m(v_f^2 - v_i^2); \ (v_f^2 - v_i^2) \text{ is same for } A \text{ and } B, \ m_A > m_B.$ Α.

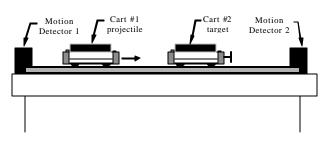
**B**. 
$$|\mathbf{W}_{\text{net on A}}| < |\mathbf{W}_{\text{net on B}}|$$

$$\mathbf{C}. \quad |\mathbf{W}_{\text{net on } A}| = |\mathbf{W}_{\text{net on } B}|$$

**D**. There is not enough information to answer.

| Name:_ | _ |
|--------|---|
|--------|---|

last


Student ID:\_\_\_\_\_

Score:

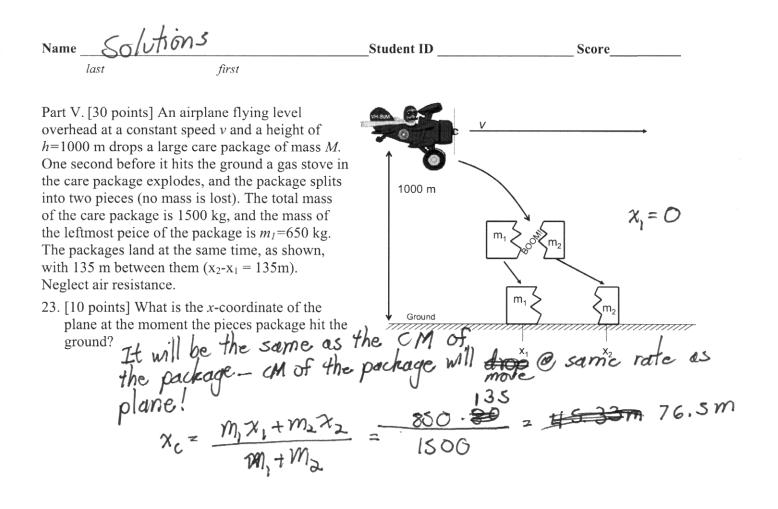
Part IV. Laboratory Question [25 points]

| <b>Experiment</b><br>bicycle wheel a<br>radius of the ba<br>measured to be<br>following table | from<br>icycle<br>25.0 | which is h<br>wheel in<br>cm. The | nanging a<br>the groov<br><b>VideoPo</b> | weight<br>ve at wl<br><b>bint</b> ana | hich the string<br>llysis program   | m=100 g<br>g is attach | m. The<br>ed is               |       |
|-----------------------------------------------------------------------------------------------|------------------------|-----------------------------------|------------------------------------------|---------------------------------------|-------------------------------------|------------------------|-------------------------------|-------|
| Elapsed Time (                                                                                | (s)                    | 0.00                              | 0.20                                     | 0.40                                  | 0.60                                | 0.80                   | 1.00                          | 1.20  |
| Rotation Angle                                                                                | e (°)                  | 0.00                              | 9.39                                     | 37.6                                  | 84.5                                | 150.3                  | 234.8                         | 338.1 |
| 17. [4 points]<br>the wheel?<br><b>A.</b> 0.273                                               | Wha<br><b>B.</b> 2.    |                                   | agnitude<br>C. 8.20                      |                                       | constant angul<br><b>D.</b> 9.81    |                        | ration (in ra<br>ot a constar |       |
| 18. [4 points] What is the angular velocity (in rad/s) of the wheel at $t=0.60$ s?            |                        |                                   |                                          |                                       |                                     |                        |                               |       |
| <b>A.</b> 0.156                                                                               | <b>B.</b> 4.           | 92                                | <b>C.</b> 23.6                           | Ī                                     | <b>D.</b> 236                       | <b>E.</b> 440          |                               |       |
| 19. [5 points]<br><b>A.</b> 0.0122.                                                           |                        | t is the va<br>0299               | lue of the <b>C.</b> 0.049               |                                       | ent of inertia o<br><b>D.</b> 0.125 |                        |                               |       |

**Experiment 7.** [12 points] Cart #1 has a mass  $\mathbf{m_1} = 200$  gm, and Cart #2 has a mass  $\mathbf{m_2} = 300$  gm. Two **SonicRanger** detectors record the position vs. time of the two carts. The **DataStudio** program analyzes their velocities along the track, and indicates that before the collision the



velocity of Cart #1 is 40.0 cm/s and the velocity of Cart #2 is 0.00 cm/s. The carts collide and Velcro surfaces of the carts stick together, so that the pair of connected carts continues to move to the right on the track.


20. [4 points] Compared to the initial momentum, the net momentum of the system after the collision is:

A. zero B. decreased C. unchanged D. increased E. indeterminate

21. [4 points] Compared to the initial energy, the total energy present in the system after the collision is:

A. zero B. decreased C. unchanged D. increased E. indeterminate

22. [4 points]What is the final velocity in cm/s of the joined carts?A. 0B. 8C. 16D. .40E. indeterminate

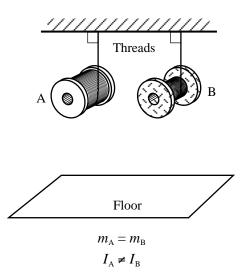


24. [10 points] How high above the ground was the care package when the stove exploded?

Drops 1000 meters - 
$$1000 = \frac{1}{2}9.842$$
  
 $t^{2} = \frac{2000}{9.8} = \frac{14}{2.8} \text{ sec.}$   
How far in 13.28 sec?  
 $1000 - \frac{1}{2} \cdot 9.8 \cdot (13.28)^{2} = \frac{135}{135} \text{ m}$ 

25. [10 points] What quantity of kinetic energy is provided by the explosion  $p_{1} = \frac{1}{76.5}$  went from  $p_{1} = p_{2} = \frac{1}{76.5}$   $p_{1} = \frac{1}{76.5}$   $p_{2} = \frac{1}{76.$ 

| Name |       | Student ID | _Score |
|------|-------|------------|--------|
| last | first |            |        |


VI. [20 Total Pts.] Two spools, A and B, are constructed so that they have the *same* mass but *different* moments of inertia. They are wrapped with different lengths of *massless* thread. The end of each string is attached to a horizontal bar as shown. (Notice that the thread is wrapped out to a larger radius on spool A.)

Both spools are released from rest at the same time. It is observed that spool B hits the floor first.

26. [4 pts] Just before spool B strikes the floor is the (linear) velocity of spool A *greater than, less than,* or *equal to* that of spool B? If there is not enough information given to answer state so explicitly. Explain.

Spool B strikes the floor first. So, it must have a larger linear acceleration. Since they start from rest and fall for the same amount of time, spool B must also have the greater linear velocity.

27. [4 pts] Just before spool B strikes the floor is the angular velocity of spool A *greater than, less than,* or *equal to* that of spool B? If there is not enough information given to answer state so explicitly. Explain.



The linear acceleration is related to the angular acceleration by a factor of the radius out to which the thread is wrapped. (i.e.  $a = \alpha r$ ) For B to have a larger linear acceleration with a smaller radius, it must have a larger angular acceleration.

## 28. [5 pts] Before spool B strikes the floor, is the tension in the thread attached to spool A *greater than, less than,* or *equal to* the tension in the thread attached to spool B? If there is not enough information given to answer state so explicitly. Explain.

Since spool B hits first, it has the larger linear acceleration. Thus, the difference between the tension and the weight is greater for spool B. Since both have the same weight, the spool attached to thread A has a tension which is greater than the tension in the thread attached to spool B.

## 29. [7 pts] Is the moment of inertia of spool A *greater than, less than,* or *equal to* the moment of inertia of spool B? If there is not enough information given to answer state so explicitly. Explain.

Torque is equal to the product of the moment of inertia and the angular acceleration ( $\tau = I\alpha$ ). The torque on spool A is larger than that on spool B because the tension in the string and the radius of the spool are both larger for spool A. Spool A, however, has a smaller angular acceleration. To get a larger torque with a smaller angular acceleration, a larger moment of inertia is necessary. So, spool A has the larger moment of inertia.