Equations of Physics 224 – Thermal Physics

You should know or be able to derive without guidance the highlighted equations.

Ideal gas: pV = NkT = nRT Internal energy $U = Nf \frac{kT}{2}$ U(p, V, N, T...) = function of state 1st Law: $\Delta U = Q + W$: Q and W are *not* functions of state, but path dependent Compressibility $\beta = -\frac{1}{v} \left(\frac{\partial V}{\partial p} \right)_T = -\left(\frac{\partial \ln V}{\partial p} \right)_T$ Equipartition $\langle E(1 \text{ d.o.f.}) \rangle = \frac{1}{2} kT$ so: $\langle \frac{1}{2} m v^2 \rangle = \frac{3}{2} kT$ For compression, $W = -\int p dV$ Adiabatic: $\Delta Q = 0$ For ideal gas: $pV^{\gamma} = \text{const}$ $\gamma = 1 + \frac{2}{r}$ $c_v = \frac{Q}{n\Delta T}\Big|_V = \frac{1}{n} \left(\frac{\partial U}{\partial T}\right)_V$ $c_p = \frac{Q}{n\Delta T}\Big|_D = \frac{1}{n} \left(\frac{\partial U}{\partial T}\right)_D + \frac{p}{n} \left(\frac{\partial V}{\partial T}\right)_D$ For ideal gas: $c_v = \frac{fR}{2}$ $c_p = c_v + R = \gamma c_v$ $L = \frac{Q}{m}\Big|_{p} \quad H = U + pV \quad c_{p} = \frac{1}{n} \left(\frac{\partial H}{\partial T}\right)_{p} \quad \text{For reaction with } p \text{ and } T \text{ unchanged, } \Delta H = Q + W_{other}$ Fourier: $\mathbf{J} = -k_t \nabla T$ (in 1D, $J = -k_t \frac{dT}{dx}$) Cons. of energy: $\nabla \cdot \mathbf{J} = w - C \frac{\partial T}{\partial t}$ (in 1D $\frac{\partial J}{\partial x} = w - C \frac{\partial T}{\partial t}$) Heat equation: $\nabla^2 T = \frac{c}{k_t} \frac{\partial T}{\partial t}$ (in 1D $\frac{\partial^2 T}{\partial x^2} = \frac{c}{k_t} \frac{\partial T}{\partial t}$) Relaxation time $\tau = \frac{c}{k_t} L^2$ Ideal gas: $k_t = \frac{1}{2} C l \bar{v}$ Probability distribution for scattering: $p(x) = \frac{1}{l}e^{-\frac{x}{l}} = -\frac{dP}{dx}$ $\langle x \rangle = l$ Mean free path $l = \frac{V}{\sqrt{2}N\sigma}$ Fick: $\mathbf{J}_{p} = -D\nabla n \quad \nabla \cdot \mathbf{J}_{p} = \frac{\partial n}{\partial t}$ (or $J_{p} = -D\frac{dn}{dx}$) Diffusion equation $D\nabla^{2}n = \frac{\partial n}{\partial t} \quad \tau = \frac{L^{2}}{D} \quad L =$ system size Two-state paramagnet: $E = q\Delta$ Multiplicity $\Omega(q) = {N \choose q} = \frac{N!}{q!(N-q)!}$ Probability $p(q) = \frac{\Omega(q)}{2^N}$ Einstein solid: $E = q\hbar\omega$ $q = \sum_{i=1}^{N} n_i$ $\Omega(q) = {N+q-1 \choose q} = \frac{(q+N-1)!}{q!(N-1)!} \approx \left(\frac{eq}{N}\right)^N$ for $q \gg N \gg 1$ [Width of peak in $\Omega(q)$] / [range of possible values of q] $\approx 1/\sqrt{N}$ Systems A and B in contact: $\Omega = \Omega_A \Omega_B$ 2nd Law: Entropy never decreases. All microstates equally probably in equilibrium. $S = k \ln \Omega \approx k \ln \Omega_{max}$ Ideal gas: $\Omega(N, V, U) = \frac{1}{N!} \frac{V^N}{h^{3N}} \frac{\pi^{\frac{3N}{2}}}{(\frac{3N}{2})!} (2mU)^{\frac{3N}{2}} = f(N)V^N U^{\frac{3N}{2}} \qquad S = Nk \left[\ln \left\{ \frac{V}{N} \left(\frac{4\pi mU}{3Nh^2} \right)^{\frac{3}{2}} \right\} + \frac{5}{2} \right]$ Free expansion of ideal gas: $\Delta S = Nk \ln \frac{V_f}{V_i} - \frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{NV} \quad p = T\left(\frac{\partial S}{\partial V}\right)_{UN} \quad \mu \equiv -T\left(\frac{\partial S}{\partial N}\right)_{UN}$ $dU = TdS - pdV + \mu dN$ and so $\mu = \left(\frac{\partial U}{\partial N}\right)_{SV}$ $\mu = p\left(\frac{\partial V}{\partial N}\right)_{US}$ $p = -\left(\frac{\partial U}{\partial V}\right)_{NS}$ Quasistatic process: TdS = Q $-p \ dV = W$ $S_2 - S_1 = \int_1^2 \frac{cdT}{T}$ 3rd Law: Heat capacities vanish as $T \rightarrow 0$. Heat engine: $\Delta S = -\frac{Q_h}{T_h} + \frac{Q_c}{T_c} \ge 0$ $\frac{Q_c}{Q_h} \ge \frac{T_c}{T_h}$ efficiency $e \equiv \frac{W}{Q_h} = 1 - \frac{Q_c}{Q_h} \le 1 - \frac{T_c}{T_h}$ Refrigerator: $\Delta S = \frac{Q_h}{T_h} - \frac{Q_c}{T_c} \ge 0$ $\frac{Q_h}{Q_c} \ge \frac{T_h}{T_c}$ $\text{COP} \equiv \frac{Q_c}{W} = \left(\frac{Q_h}{Q_c} - 1\right)^{-1} \le \left(\frac{T_h}{T_c} - 1\right)^{-1}$ Throttling: $\Delta H = 0$, cools if $\left(\frac{\partial T}{\partial p}\right)_{II} = 0$ F = U - TS $dF = SdT - pdV + \mu dN$ G = U - TS + pV $W_{other} \ge \Delta G \quad W_{useful} \le -\Delta G \quad V_{cell} = -\frac{\Delta G \text{ per electron}}{e} \quad \text{efficiency } \frac{W_{useful}}{Q} \le \frac{\Delta G}{\Delta H}$ $dG = -SdT + Vdp + \mu dN \quad S = -\left(\frac{\partial G}{\partial T}\right)_{p,N} \quad V = \left(\frac{\partial G}{\partial p}\right)_{T,N} \quad \mu = \left(\frac{\partial G}{\partial N}\right)_{T,p} \quad G = N\mu$ Spontaneous process at constant p, T: $\Delta G \leq 0$ ie $\Delta(S_{system} + S_{reservoir}) \geq 0$ Maxwell relations: $\left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_T$ $\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V$ $\left(\frac{\partial T}{\partial p}\right)_S = \left(\frac{\partial V}{\partial S}\right)_T$ $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$ In phase equilibrium $G_A = G_B$ Clausius Clapeyron: $\left(\frac{\partial p}{\partial T}\right)_{phase\ boundary} = \frac{S_A - S_B}{V_A - V_B} = \frac{L}{T\Delta V}$ Boltzmann: $P(s) = \frac{1}{z}e^{-\frac{E(s)}{kT}}$ Partition function $Z = \sum_{s} e^{-\frac{E(s)}{kT}}$ Continuous case: $Z = C \int e^{-E(s)/kT} ds$ $U = -\frac{\partial}{\partial\beta}(\ln Z)$ $\beta = 1/kT$ $F = -kT \ln Z$