321 midterm 1 October 2000

1. Consider a sphere, of radius R and uniform charge density such that the total charge is Q.
(a) (5) There is a second Gaussian sphere of radius $r>R$ with a center which is a distance $2 r$ away from the center of the charge carrying sphere. Determine the electric flux through the Gaussian sphere.

Nocharge enclosed elea flux $=0$
(b) (5) Now suppose the Gaussian sphere of radius $r>R$ has the same center as the original sphere. Determine the electric flux through the second sphere for this new situation.

$$
\text { Electric flux }=a / \varepsilon_{0}
$$

(c) (10) Consider again the Gaussian sphere of part (b). Show that the surface integral over the Gaussian sphere is given by $\oint \vec{E}(\vec{r}) \cdot \hat{n} d A=4 \pi r^{2} E(r)$.
spherically sym metric charsedistribution

$$
\begin{aligned}
& \vec{E}(\hat{r})=E(r) \hat{r} \quad \text { Sphere } \hat{h}=\hat{r} \\
& \vec{E} \cdot \hat{h}=E(r) \\
& \oint_{\text {Sphae }} \vec{E} \cdot \hat{h} d a=\int_{\text {Sphere }} E(r) d t=E(r) \int d A=E(r) 4 \pi r^{2}
\end{aligned}
$$

(d) (10) Consider $r<R$, show that $E(r)=\frac{1}{\partial \epsilon_{0}} \frac{\not \partial Q}{4 \pi R^{3}} r$.

$$
\begin{aligned}
E 4 \pi r^{2} & =\text { chase enolclared / } \sigma_{0} \\
& =\frac{1}{\sigma_{0}} \int_{0}^{r} 4 \pi r^{2} d r \frac{Q 3}{4 \pi R^{3}} \\
24 t r^{2} & =\frac{1}{\epsilon_{0}} 4 \pi \frac{r^{3}}{3} \frac{3 Q}{4 \pi R^{3}} \\
& =\frac{1}{\sigma_{0}} \frac{r^{2} Q}{4 \pi R^{3}}
\end{aligned}
$$

(e) (15) Determine the electrostatic energy stored in the sphere of radius R and charge Q.

$$
\begin{aligned}
W & =\frac{1}{2} \epsilon_{0} \int d^{3} r E^{2} \\
& \left.=\frac{\epsilon_{0}}{2} 4 \pi \iint_{0}^{R} r^{2} d r^{E^{2}}+\int_{R}^{\infty} r^{2} d r E^{2}\right\} \\
& =\epsilon_{0} 2 \pi\left[\int_{0}^{R} r^{2} d r\left(\frac{r^{2} Q}{4 \pi R^{3} \epsilon_{0}}\right)^{2}+\int_{R}^{\infty} r^{2} d r\left(\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right)^{2}\right] \\
& =\frac{\epsilon_{0} 2 \pi}{16 \pi^{2} \epsilon_{0}^{2}} Q^{2}\left[\int_{0}^{R} \frac{r^{2} d r r^{2}}{R^{6}}+\int_{R}^{\infty} \frac{r^{2} d r}{r^{4}}\right] \\
& =\frac{Q^{2}}{8 \pi \varepsilon_{0}}\left[\frac{R^{5}}{5 R^{6}}+\frac{1}{R}\right]=\frac{Q^{2}}{4 \pi \varepsilon_{0} R} \frac{3}{5}
\end{aligned}
$$

2. This problem is concerned with a thin disk of radius R with a charge per unit area of σ. (a) (10) Compute the electric potential $V(z)$ at a distance z on the axis of the disk (directly above the center of the disk).

$$
\begin{aligned}
& \int_{-\frac{a^{\prime} \sigma}{r}}^{d q}=\frac{1}{4 \pi \varepsilon_{0}} \sigma 2 \pi \int_{0}^{k} \frac{s d s}{\sqrt{s^{2}+z^{2}}}=\frac{1}{4 \pi \varepsilon_{0}}-2 \pi \sigma\left(\sqrt{R^{2}+z^{2}}-z\right) \\
& d a=\int_{d s b} d \&
\end{aligned}
$$

(b) (10) Determine the electric field $\vec{E}(z)$ at that same point.

$$
\begin{aligned}
& \vec{E}=E(z) \vec{z} \text { (from orlindricalsemnetri) } \\
& E(z)=-\frac{\partial V}{\partial z}=\frac{1}{2 \varepsilon_{0}}\left[\frac{z}{\sqrt{R^{2}+z^{2}}}-1\right]
\end{aligned}
$$

(c) (10) Suppose $R \gg z$, what should the electric field $\vec{E}(z)$ be? $R \gg z$

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

from above, or by application of Gauss Lave
(d) (15) Now consider positions close to the axis, but a distance $s \ll R^{\boldsymbol{\tau}}$ away from the axis. Obtain the potential $V(s, d)$. Your answer should be expressed in terms of a well-defined double integral. Do not carry out the integral.

$$
\begin{aligned}
& V(s, d)=\frac{1}{4 \pi \varepsilon_{0}} \sigma \int_{0}^{R} s d s^{\prime} \int_{0}^{2 \pi} d \frac{d}{\left|\vec{r}-\vec{r}^{\prime}\right|} \\
& \left|\vec{r}-\vec{r}^{\prime}\right|=\sqrt{z^{2}+\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}=\sqrt{z^{2}+s^{2}+s^{\prime 2}-2 s s^{\prime} \cos \phi} \\
& V^{\prime}(s, d)=\frac{1}{4 \pi \varepsilon_{0}} \sigma \int_{0}^{R} s^{\prime} d s^{\prime} \int_{0}^{2 \pi} \frac{d \phi}{\sqrt{z^{2}+s^{2}+s^{\prime}-2 s s^{\prime} \cos \phi}}
\end{aligned}
$$

(for $s 《 R, z$)
(e) (10) Explain why $V(s, z)$ is well approximated by the expression of the form $V(s, z)=$ $V(0, z)+s^{2} f(z) . \quad E_{x}=E_{y}=0$ for $x=y=0$, Cylindrical symmetry means $V(s, z)$
Thus any dependence on s^{2} must lead to dependsons ${ }^{2}$ andanishins $E_{x} \theta_{y}$.

$$
S^{2}=x^{2}+y^{2} \quad \text { Ex } \alpha 2 x=0 \text { for } x=0
$$

S^{4} and higher powers are ignore because s^{2} is small.

