322 Midterm 1 practice

1. (a) State the Biot-Savart law for computing the magnetic field $\vec{B}(\vec{r})$, define all your terms.

(b) Consider a segment of a wire, carrying a current I, located along the x-axis from x = -a to x = a. Compute the magnetic field at a point \vec{r} defined by the Cartesian coordinates (x, y, z) = (0, D, 0), with D > 0. A correct expression would take the form of a one-dimensional integral with all terms defined. Do **not** evaluate the integral.

2. Consider a square loop of wire, of side w, carrying a current I.

(a) Determine the magnetic dipole moment \vec{m} of the loop.

(b) Determine the approximate magnetic field a distance $z\gg w$ above the center of the square $\mathbf{0}_{\bullet}$

(c) Determine the magnetic field at the center of the square, O.

3.	An infinitely long	circular cylind	er of radius .	R carries	a magnetization	$\vec{M} = ks^2$	$^{2}\widehat{\phi}$, where	k
is	a constant, s is the	e distance from	the axis and	l $\widehat{\phi}$ is the a	azimuthal unit v	vector.		

(a) Consider the the vector potential **A** for the given situation. Is the vector potential expressed as a volume integral, a surface integral, or a sum of a volume integral and a surface integral? Explain.

(b) Determine the bound current density, J_b .

(c) Determine the total bound current, and then define this quantity to be I_b .

(d) Determine the magnetic field **B** outside the cylinder.

(e) Determine the magnetic field ${\bf B}$ and ${\bf H}$ inside the cylinder.