322 MdTerm 2 Solutions

1. (a) In terms of free charge and current densities, ρ_f , \mathbf{J}_f state the partial differential equation version of Maxwell's equations.

$$\nabla \times \vec{e} = -3\vec{g}$$

$$\nabla \times \vec{h} = \vec{J}_{5} + 3\vec{h}$$

$$\nabla \times \vec{h} = \vec{J}_{5} + 3\vec{h}$$

(b) Use Maxwell's equations to show that
$$\nabla \cdot \mathbf{J}_f + \frac{\partial \rho_f}{\partial t} = 0$$

$$\nabla \cdot (\nabla \times \mathbf{H}) = 0 = \nabla \cdot \mathbf{J}_f + \nabla \cdot \mathbf{J}_f = 0$$

$$= \nabla \cdot \mathbf{J}_f + \partial \mathbf{J}_f = 0$$

$$= \nabla \cdot \mathbf{J}_f + \partial \mathbf{J}_f = 0$$

(c) A conducting bar of mass m, slides down the conducting wedges shown in the figure. The wedges are separated by a distance l, connected at the top by a resistance R and make an angle θ with the vertical. A uniform magnetic field, \mathbf{B} points horizontally as shown. The bar is released from rest and slides down the rails, moving with speed v such that $\left|\frac{\partial \Phi}{\partial t}\right| = BLv\cos\theta$. Determine the terminal speed (final constant speed) of the bar.

$$v = \frac{mgR}{Bg^2 cos G}$$

- 2. A capacitor with parallel plates, with radius a and separation $d \ll a$ has a potential difference $V(t) = V_0 \frac{t}{\tau_0}$, which is the potential at the top (z = d) minus that of the bottom (z = 0), and τ_0 is a constant with dimensions of time.
- (a) Show that the magnetic field **B** obeys the equation: $\nabla \times \mathbf{B}(s,z,t) = -\frac{\mu_0 \epsilon_0}{\tau_0 d} V_0 \hat{\mathbf{k}}$, where s is

(a) Show that the magnetic field **B** obeys the equation:
$$\nabla \times \mathbf{B}(s, z, t) = -\frac{\mu_0 \epsilon_0}{\tau_0 d}$$
 the distance from the axis of symmetry. $\nabla \times \mathbf{B} = +\frac{2}{3} \epsilon \mu_0 \epsilon_0$

$$= \mu_0 \epsilon_0 \left(+\frac{V_0}{L} \right) \int_{L}^{L} dt$$

(b) Determine B for 0 < z < d and s < a. B is along \bullet direction 13 = B 6 SB. de = & MoVo area

dt.

211 BS = & MoVo 7152 =>

(c) Determine **B** for 0 < z < d and s > a.

- 3. An infinitely long solenoid of radius R, n turns per unit length, and current I_0 lies along the z axis, which also is the axis of the solenoid. $\mathbf{B} = \mu_0 \ nI \ \hat{\mathbf{k}}$. Let s be the distance away from the z axis.
- (a) Determine the magnetic energy density for s < R.

$$U = \frac{1}{2} B^2 = \frac{10}{2} N^2 I^2$$

- (b) Now suppose that the current is time-dependent, so that, if t > 0, it decays slowly with time:
- $I(t) = I_0 e^{-t/\tau_0}$. Determine $\mathbf{E}(s,t)$ for positions inside the solenoid, where s is the distance away from the center.

(Determine the density of electromagnetic momentum and the vector $\nabla \cdot \stackrel{\leftrightarrow}{\mathbf{T}}$.

$$P_{em} = \mathcal{E}_{0}(\vec{E} \times \vec{B}) = \mathcal{E}_{0}(\vec{B} \times \vec{B}) = \mathcal{E}_{0}(\vec{E} \times \vec{B}) = \mathcal{E}_{0}(\vec{B} \times \vec{B$$