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1. (a) In terms of free charge and current densities, ps, J state the partial differential equation
vers1on of Maxwell s equatious.
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(b)Use Maxwell’s equations to show tlﬁt V-Js+ a—pﬁ =0 - D @D =D
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(c) A conducting bar of mass m, slides down the conducting wedges shown in the figure. The
wedges are separated by a distance [, connected at the top by a resistance R and make an angle
with the vertical. A uniform magnetic field, B points horizontally as shown. The bar is released
from rest and slides down the rails, moving with speed v such that |6q) = BLwvcosf. Determine
the terminal speed (final constant speed) of the bar.
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2. A capacitor with parallel plates, with radius a and separation d < a has a potential difference
V(t) = VO%, which is the potential at the top (z = d) minus that of the bottom (2 = 0), and 7,
is a constant with dimensions of time.

(a) Show that the magnetic field B obeys the equation: V x B(s, z,t) = —‘;:)’—63—%12, where s is

the _glistance from the axis of symmetry. » o J
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(¢) Determine B for 0 < z < d and s > a.
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3. An infinitely long solenoid of radius R, n turns per unit length, and current Io lies along the
z axis, which also is the axis of the solenoid. B = g nl k. Let s be the distance away from the

Z axis.
(a) Determine the magnetic energy density for s < R. .
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(b) Now suppose that the current is time-dependent, so that, if ¢ > 0, it decays slowly with time:
I(t) = Iye™*/™. Determine E(s, t) for positions inside the solenoid, where s is the distance away

from the center. g -~ & 3 § é'&i = ABE C iccurclo
c 3¢ of radrus <

A€ = -3 )Jowal = 'S M.qvv"’ s,
Y€

T
-3
€= S ponl, U B
3 <.

A nd
(€ Determine the density of electromagnetic momentum and the vector V- T.
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