323 Midterma Solutions

1. Consider a wave guide with a hollow cross sectional area in the form of a right isosoles triangle as shown in the figure. The direction of propagation is the z direction, with z axis perpendicular to the page. This entire problem is concerned with TM modes of angular frequency ω . Hint: if x = y, $e^{i(\alpha x + \beta y)} - e^{i(\alpha y + \beta x)} = 0$.

- (a) What is B_z ? TM means mag. field 1stransvers $B_z = 0$
 - (b) For waves propagating in the positive z direction, we may write the z component of the electric field as $E_z(x,y)e^{i(kz-\omega t)}$. State the boundary conditions that $E_z(x,y)$ must obey.

(c) Derive a wave equation for $E_z(x,y)$. Manuall's equation for $E_z(x,y)$. Manuall's equation $\{\nabla^2 - \frac{1}{2} \frac{\partial^2}{\partial t^2}\} \stackrel{?}{=} \{x,y,z,t\} = 0$ Take z = component + asin, $E_z(x,y) = (kz - \omega t)$ $\{\nabla^2 - \frac{1}{2} \frac{\partial^2}{\partial t^2}\} \stackrel{?}{=} \{x,y\} = 0$

Problem 1 continued

Determine

(d) Determine the set of functions $E_z(x,y)$ that satisfy the wave equation and boundary conditions. \mathbf{h}

(e) Determine the lowest cutoff frequency.

herd from >0 W>Umn = T \n2 +un

Lowest wome has m=1, n=2

(if m=1=n)

(if m=1=n)

- 2. This problem concerns radiation from a system of charges and currents that is localized near an origin, surrounded by empty space. Suppose that, for positions \mathbf{r} in the radiation zone, the vector potential can be represented by the expression $\mathbf{A}(\mathbf{r},t)=e^{i(kr-\omega t)}\frac{\mathbf{a}(k,\widehat{r})}{r}$, with $\mathbf{a}(k,\widehat{r})$ a given but unspecified function. This problem is concerned with fields in the radiation zone. $(\widehat{r}=\frac{\mathbf{r}}{\mathbf{r}})$.
- (a) Determine $\mathbf{B}(\mathbf{r},t)$.

(b) Determine
$$\mathbf{E}(\mathbf{r},t)$$
. $\vec{\mathbf{E}} = - c \vec{\mathbf{r}} \times \vec{\mathbf{B}}$ (Fram.)

(c) Show that the angular distribution of (time averaged) radiated power, $\frac{dP}{d\Omega}$ is given by $\frac{dP}{d\Omega} = \frac{k^2c}{2\mu_0}|\hat{r}\times\mathbf{a}|^2$.

$$\frac{dP}{d\Omega} = \frac{1}{2} F^2 Pe \left(F \left(F \times B^* \right) \right) = \frac{1}{2} h_{ac} F \cdot \left(\left(F \times B \times B^* \right) \right)$$
with $\vec{v} = F \times \vec{a}$, $F \cdot \left(\left(F \times B \times B^* \right) \right) = |\vec{v}|^2 So$

$$\frac{dP}{d\Omega} = \frac{1}{2} \int_{-100}^{100} e^{-|\vec{v}|} |\vec{v}|^2 d\vec{v}$$

Problem 2 continued

(d) A system consists of a particle of charge Q moving along a trajectory given by $\mathbf{r}_Q(t) = \widehat{\mathbf{x}}L\cos(\omega_0 t)$ and a wire loop of radius R > L. This loop is located in the xy plane and is centered at the origin with current $I(t) = I_0\cos(\omega_0 t)$. Suppose $\omega R/c \ll 1$. Determine the vector function $\mathbf{a}(k|\widehat{\mathbf{r}}) = 1$.

a(k,\hat{r}). We mayuse the long wave length approximation. From text with both electric and magnetic dipole:

(e) For the situation of part (d) determine $\frac{d\bar{P}}{d\Omega}$.

$$\frac{dP}{dR} = \frac{1}{2} \left[\frac{l^2}{k^2} \left(\frac{1}{4\pi} \right)^2 + \frac{1}{2} \left(\frac{w}{4\pi} \right)^2 \right]$$

$$\frac{dP}{dR} = \frac{1}{2} \frac{h^2}{\mu_0} \left(\frac{|\omega \mu_0|}{4\pi} \right) \left(\frac{P^2(1-\sin 6\cos^2 4) + m^2}{2} \sin 6 \right)$$