Review of the isotope effect in the hydrogen
spectrum

1 Balmer and Rydberg Formulas

By the middle of the 19th century it was well established that atoms emitted light at discrete
wavelengths. This is in contrast to a heated solid which emits light over a continuous range of
wavelengths. The difference between continuous and discrete spectra can be readily observed by
viewing both incandescent and fluorescent lamps through a diffraction grating.

Around 1860 Kirchoff and Bunsen discovered that each element has its own characteristic spec-
trum. The next several decades saw the accumulation of a wealth of spectroscopic data from many
elements. What was lacking though, was a mathematical relation between the various spectral lines
from a given element. The visible spectrum of hydrogen, being relatively simple compared to the
spectra of other elements, was a particular focus of attempts to find an empirical relation between
the wavelengths of its spectral lines. In 1885 Balmer discovered that the wavelengths A, of the then
nine known lines in the hydrogen spectrum were described to better than one part in a thousand
by the formula

An = 3646 x n?/(n* — 4) A (angstrom), (1)

where n = 3,4,5,. .. for the various lines in this series, now known as the Balmer series. (1 angstrom
= 10719 m.) The more commonly used unit of length on this scale is the nm (10~ m), but since
the monochromator readout is in angstroms, we will use the latter unit throughout this write-up.

In 1890 Rydberg recast the Balmer formula in more general form as
1/A, = R(1/2% — 1/n?%) (2)

where again n = 3,4,5,... and R is known as the Rydberg constant. For reasons to be explained
later, its value depends on the mass of the nucleus of the particular isotope of the atom under
consideration. The value for hydrogen from current spectroscopic data is

Ry = 109677.5810 cm ™ *[1],
and the current value for an infinitely heavy nucleus is

Roo = 109737.31568525(73) cm ' [2).

A generalization of the Rydberg formula to

() (3)]

suggested that other series may exist with n; taking on the values 1,3,4,5,..., subject to the
restriction that no > ny. This proved to indeed be the case. In 1906 Lyman measured the
ultraviolet spectrum of hydrogen and found the series, now bearing his name, corresponding to
n; = 1. In 1908 Paschen measured the infrared spectrum of hydrogen and discovered the series,
now bearing his name, corresponding to ny = 3. Figure 1 shows some of the lines in these series.
The vertical axis in this figure is linear in energy (given in units of electron-volts, or eV, at the
right), so you can get some sense of the relative energies of the different series.
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The spectrum of atomic hydrogen.

Figure 1: Energy level diagram of atomic hydrogen showing the transitions giving rise to the Lyman
(IR), Balmer (visible) and Paschen (UV) spectra.



The remarkable success of the Rydberg formula in describing the spectrum of atomic hydrogen
was in stark contrast to theoretical understanding of the atom in the early 1900’s. Attempts to
understand the emission of light at discrete wavelengths, or frequencies, using principles of classical
mechanics and electrodynamics proved fruitless, as classical theory does not allow for an electron
to circulate about a nucleus in a stable orbit. Rather, classical theory predicted that the negatively
charged electron, circulating about the positive nucleus under the influence of a Coulomb potential,
would emit radiation due to the centripetal acceleration associated with circular motion (recall that
accelerating charges emit radiation). As the electron emitted radiation and lost energy, the orbit
would shrink and eventually (in a predicted 107! seconds!) the electron would spiral into the
nucleus, emitting a continuum of radiation in the process. The stability of atoms, and discrete
atomic spectra clearly demonstrate that such a theory does not describe atomic behavior.

2 The Bohr Postulates

in 1913 the Danish physicist Niels Bohr, working at Ernest Rutherford’s laboratory in Manchester,
England, proposed a blend of classical and radically new ideas to describe atomic behavior. His
three postulates were:

1. The electron moves in a circular orbit about the nucleus under the influence of the Coulomb
potential, obeying the laws of classical mechanics;

2. In contrast to the infinite number of orbits allowed classically, the electron can occupy only
orbits for which its orbital angular momentum is quantized in units of A, i.e., L = orbital
angular momentum = nh where n = 1,2, 3,.... Electrons are stable in such orbits, i.e., they
have a well defined energy and do emit radiation even though they are undergoing centripetal
acceleration. Bohr termed these orbits stationary states;

3. Radiation is emitted when an electron transitions from one stationary state to another. The
energy of the radiation, £ = hv, is equal to the difference in the energies of the initial and
final stationary states.

The first postulate is clearly based on classical theory; however the second and third postulates
marked a radical departure from classical concepts. Applying these postulates to the hydrogen
atom, Bohr’s model predicted the total energy of an electron in a stationary state with orbital
angular momentum L = nh to be
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where m is the mass of electron, Z is the number of protons in the nucleus (Z = 1 for hydrogen)
and e is the charge of the electron [3]. A transition from a state of higher energy to one of lower
energy should result in the emission of radiation with energy
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where n;h and nyh are the electron orbital angular momenta of the initial and final states, respec-

tively. Comparing this formula with the Rydberg formula we find that Ry should be
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That Bohr’s theory resulted in an expression for the Rydberg constant in terms of fundamental
constants was a great triumph as it allowed for evaluation of the above expression and comparison
to the value derived from spectroscopic data. Then current values for m, e, h and c indicated good
agreement between Ry calculated from Bohr’s theory and experimentally derived values.

But doubters of Bohr’s theory remained, with skepticism on the continent being particularly strong.
His brother Harald wrote Bohr in the fall of 1913 from Goéttingen, Germany, saying that the
physicists there considered Bohr’s model to be too “bold” and too “fantastic”. Rutherford himself
was skeptical, asking Bohr, “How does the electron decide what frequency it is going to vibrate
(radiate) at when it passes from one stationary state to another? It seems to me that you would
have to assume the electron knows beforehand where it is going to stop.”

And skeptics were buttressed by new experimental results. Measurements of the spectral lines of
singly ionized helium (one electron orbiting around a nucleus with two protons) showed that the
ratio of the wavelengths of corresponding helium and hydrogen lines (same n; and ny) was not 1:4
as predicted by Bohr’s formula, but rather 1:4.0016. (The ratio 1:4 results from increasing Z from
one to two in the above expressions for the electron energy.) Bohr quickly revised his postulates,
now requiring that the total angular momentum, the combined angular momentum of both the
electron and the nucleus, be quantized in units of A. The result of this requirement is that in the
expression for the electron energy, the electron mass m must be replaced by the reduced mass p,

o =mM/(M +m) (6)

where M is the mass of the nucleus. This result is derived below. The expression for the radiation
energy of hydrogen-like ions (i.e., one electron orbiting Z protons) is now
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where f1, is the reduced mass of atom X. According to Bohr’s revised theory, the wavelength ratios
between corresponding hydrogen and helium lines should be 44, /. It turns out that
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(you may wish to verify this) resulting in complete agreement between theory and observation.

When Einstein learned of this latest success of the Bohr theory, he responded: “This is an enormous
achievement. The theory of Bohr must then be right.”

The inclusion of the nuclear mass M into the equation for the spectral energies indicates that
different isotopes of the same element should show different spectra, since these atoms would have
different reduced mass. The existence of the isotope of hydrogen, deuterium, whose nucleus contains
one neutron and one proton, was discovered by Harold Urey and his co-workers around 1930 using
spectroscopic methods after they successfully produced samples of deuterium-enriched hydrogen by
a distillation process [4]. Harold Urey was awarded the Nobel Prize in Chemistry in 1934, “for his
discovery of heavy hydrogen.”

3 Theory of the reduced-mass correction

Consider a classical system of two particles of mass M and m interacting via central forces (i.e.,
Coulomb or gravity). Let the position vector between the two particles be #. When no external



forces act on the system, the center of mass R will be at rest with respect to some inertial reference
frame S. The center of mass is defined as

MX +m&

R =
M+ m

7 (8)

where X and & locate the particles of mass M and m with respect to the origin of S, and & = X +7.
Since the center of mass is at rest with respect to S, a physically equivalent reference frame S’ has
its origin at the center of mass itself; in S/, the center of mass of the system
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Hence MX = —ma@. Tt is still true that 7 = & — X,, since & and X are related to & and X by
a simple translation. These two equations can be solved to yield
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In S’ the energy of the two particle system is given by
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where the “dot” notation indicates a derivative with respect to time and V(r) is the potential
energy between the two particles. Upon taking derivatives of Eqgs. (10) and (11) and substituting
the result into the energy equation one obtains

_1(mM

= m+M>f2+V(r). (13)
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Clearly, the expression in parenthesis in the above equation is the reduced mass u, Eq. (6). An
advantage of expressing the energy in terms of u is that one transforms the problem of two particles
of masses m and M into a problem of one particle of mass p. A similar calculation shows that one
can write the angular momentum about the center of mass in a similar way:
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In the Bohr model and in the subsequent Schrodinger theory, these classical results translate directly
into their quantum equivalents.

4 The effect of the reduced mass on the spectrum

From a measurement of the wavelength difference for a given transition that produces a spectral
line, you can derive the ratio of the masses of the hydrogen and deuterium atoms. The results for
the three visible lines (the «,  and ~ lines) can then be combined into a final result for the mass
ratio.



The spectral lines are produced by a gas discharge lamp. In our setup, the lamp contains hydrogen
enriched with deuterium so that both spectra are produced simultaneously. Enrichment of the
hydrogen is necessary as the natural abundance of deuterium is about .015%.

From the Rydberg formula corrected for reduced mass, Eq. (7), we see that the wavelength of light
emitted from a particular transition is inversely proportional to the reduced mass:

1/Ax o< px - (15)

Because of this proportionality, we see that the nuclear masses of hydrogen and deuterium, My
and Mp, are related to the different wavelengths of light produced by each isotope:
Am—Ap 1wy —1/p, 1—My/Mp

— = . 16
AH 1/ 1y 1+ Mu/m (16)

The mass My is, of course, just the mass of the proton M,,, and the ratio of the proton and electron
masses is well known, M,/m = 1836.15. Combining this with the results of your measurements,
the ratio of the masses of the two nuclei, My /Mp can easily be derived. By adding in electron
masses, the mass ratio of the two isotopes can be derived and compared to established values,

Muydrogen  1.007825

Mdeuterium 2.014102 0.50038

References

1. H. Haken and H. Wolf, The Physics of Atoms and Quanta, Springer, New York, 1996, p 98.

2. National Institute for Standards and Technology website. Go to http://physics.nist.gov/ and
search for physical constants or the Rydberg constant.

3. R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles,
2d ed., Wiley, New York, 1985, p. 101.

4. H. C. Urey, F. G. Brickwedde, and G. M. Murphy, Phys. Rev. 40, 1 (1932).

Prepared by J. Stoltenberg and D. Pengra
HD_mass_theory.tex —-- Updated 27 March 2006



