Physics 331 — Logistics, Timeline, etc.

Website: http://courses.washington.edu/phys331/
Lec: PAA110 (M 11:30-12:20PM)

OH: Thursday 4-5 pm at B437 or by appointment
Lab: Rm B260 (Sec A,B,C,D - TW,FM 130-420PM)
Text: Optics by Eugene Hecht, also see website

Today...

» Course Requirements

» Speed of light experiment
» Uncertainty analysis


http://courses.washington.edu/phys331/

Physics 331 — Logistics, Timeline, etc.

Course Requirements: Total eight labs
Must perform Speed of Light (SOL) + 5 other labs
Must submit lab reports on SOL + 5 (or more) labs
Must submit pre-lab-reports except SOL (+5 labs)
SOL lab duein 1 week (5%/late day deduction)

Others due in 2 weeks after lab completed (5%/late day deduction)
Pre-lab-reports due before each lab (no points for any delay)

Last submission day — Monday, (12/11/2015)

Exam: One in-class exam based on lecture materials (12/07/2015).

Nov. 11 Veterans Day (Wednesday) -> The
Wednesday of Thanks Giving week (Nov 25)

Make-up lab: Monday and Tuesday labs (Nov. 23 and 24 ™) of the Thanks
Giving week (or regular lab-sections if you can find open spots)



Important: To be eligible for getting final grade for Physics 331a, you
must submit the speed of light report by Monday (Oct. 26), and submit
at least three full reports by Monday Nov. 16,

Course Grade:
SOL: 10%; Each other lab report worth 15%

Exam worth 10%

Pre-lab:5%
Grade = SOL+Top 5 of other Lab reports+ Exam+pre-lab-reports
= 10%+ 75%+ 10%+ 5%=100%

Writing Credit: To be eligible for writing credit, you
must submit eight lab reports.




Physics 331 — Logistics, Timeline, etc.

Lab sign-up sheets will be handed out during lecture and
will hang outside the lab door the rest of the week. Except
weeks 1 and 2, two-three people per lab (1 and 4-person
Labs are not allowed).

There are still 19 students singed up for the Tuesday lab (Try
Friday or Wend).

Important Handouts (see Website):
http://courses.washington.edu/phys331/index.php

Lab writeups (and accompanying material) — please read before lab
Statistics Summary

Notes on Data Analysis and Experimental Uncertainty

Lab Practice and Writing Reports

Recommended Readings

Lectures will be placed on Web after class


http://courses.washington.edu/phys331/index.php

o
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Speed of light: Measure speed of light using time of flight method.

Concave Diffraction Grating A concave grating in a Rowland mount is used to determine the
Rydberg constant tor atomic hydrogen. The spectral resolution of the grating is investigated through
a measurement of the spectrum of atomic deuterinm.

Fabry-Perot Interferometer A modular mirror system is used to construct and investigate the
properties of the most widely used type of multiple-beam interferometer. It is used to measure the
mode structure of HeNe lasers operating at A = 633 nm and A = 544 nm.

Michelson Interferometer A modular mirror system is used to set up and investigate the prop-
erties of an historically significant interterometer. Interference patterns are observed for three types of
light sources: a laser, an incandescent lamp (white-light), and a sodium lamp. The yvellow sodium D
lines are used to illustrate the Fourier transform properties of the interferometer.

Fraunhofer and Fresnel Diffraction in One Dimension Fraunhoter diffraction is “far-field”
diffraction from a single slit and from equally spaced multiple slits. The patterns ohserved can be
interpreted in terms of the Fourier transtorm of an aperture function. Fresnel Diffraction is “near-
field” diffraction. We study the pattern from an adjustable-width slit and a halt plane, and explore
the transition from Fresnel diffraction to the Fraunhofer limit. A linear photodetector array is used to
acquire a digitized output of the light intensityv in the diffraction patterns. This allows a quantitative
comparison with the theory.

Reflection of Light at an Air-Dielectric(Glass) Interface Reflection from a glass plate is
studied as a function of the angle of incidence, the polarization and the wavelength. Time permitting,
the same study can be made for a glass surface with an antireflection coating.

Faraday Rotation  The rotation of the plane of polarization of light propagating along a magnetic
field in a dispersive medium is studied as a tunction of magnetic field and compared to a simple theory.

Holography  The relationship between a hologram and a diffraction pattern is explored by making
and viewing transmission holograms with a HeNe laser. NOTE: you must complete at least one of
the following experiments before attempting the holography experiment: Fabryv-Perot interferometer,
Michelson intertferometer, or Fraunhofer and Fresnel diffraction.



Sign-up Sheet for Speed of Light

For this week only: Maximum group size = 4 persons

Monday (AD) Tuesday (AA) | Wednesday (AB) | Friday (AC)
1 October 2 October 3 October ~ 5 October
Group 1 M
Group 2
Group 3
Group 4
Group 5

Lab. sign-up sheet



Optics Lab — Physics 331

Sign-up Sheet

Mondayl:30

AD

Tuesday 1:30 Wednesday1:30

AA AB

Friday 1:30

AC

Fraunhofer &
Fresnel
Diffraction

Fabry-Perot
Interferometer

Michelson
Interferometer

Concave Diffr:

Please remember what

“ryou have signed up

Reflection from a
Dielectric Surface

Faraday Rotation

Holography

Must complete Fabry-

Perot or Michelson
interfrometer

i




Lab Safety

http://courses.washington.edu/phys331/lab practice and report.pdf

Lab Practices, Precautions, Notebooks and Reports

Precautions

e No food or drink are permitted in the lab.

e« DO NOT LOOK DIRECTLY INTO ANY LASER BEAM OR ANY SPECULAR RE-
FLECTION OF A LASER BEANI. The lasers in the lab put out 2 mW, more than needed for
permanent eye damage.

e DO NOT touch mirror surfaces, or any optical surface. If a component is dirty, please consult
the Lab Manager.

e In the diffraction experiment (Exp. 5) do not focus the unatienuated (i.e., not dimmed with a polarizer)
laser light to a point on the linear array. Focus the beam on an index card in place of the arrav, then
remove the card after dimming the beam.

e Use special care with the spatial filter pinholes (1-d diffraction experiments use these).

e The curtains around each lab station can easily be pulled out of their tracks. To avoid this, gather the
curtain in small bunches and pull a small portion of the curtain at any one time

e Avoid leaning on optical tables.

e Mirrors, lenses should be covered when experiments are finished. When in doubt, ASK FOR IN-
STRUCTIONS.


http://courses.washington.edu/phys331/lab_practice_and_report.pdf

Report: Pre-Lab-Report and Lab Report

Pre-Lab-Report: Due when you sign-in the lab.

1. What's the general purpose of the experiment?

2. What are the quantities you will directly measure and how to
measure?

3. What are the quantities you will derive from the measurement and
how to derive it?

Example of pre-lab-report
http://courses.washington.edu/phys331/xu 11-12/Example of Pre-lab-reports.pdf

Lab Report
Lab report grading standards.
http://courses.washington.edu/phys331/Reports grading 331.pdf

Academic Honesty

Students working together are encouraged to discuss their analysis and results with each other (and with
other students) but must independently generate their own written reports.

The way in which you estimate vour uncertainties must ALWAYS be clearly shown. If vou copy text from

the lab instructions, yvou are wasting space. You are asked to give a brief statement in the introduction: this
means in YOUR words.


http://courses.washington.edu/phys331/Reports_grading_331.pdf
http://courses.washington.edu/phys331/lab_practice_and_report.pdf
http://courses.washington.edu/phys331/Reports_grading_331.pdf
http://courses.washington.edu/phys331/xu_11-12/Example_of_Pre-lab-reports.pdf

Lab Report (50 points)

Switch to grading policy......

http://courses.washington.edu/phys331/Report_Grading_standards.pdf



Speed of Light Experiment — History and Background

Galileo, 1638

\ L \

Lantern A Lantern B

c=2L/T

A feasible scheme?

c=~3*108 m/s; L=3000 m;
1=2L/c=2*3000/ (3*108)=2*10° s=0.02 ms

Mean response time T of college
students:190 milliseconds
T/t~10% !!!'— not enough response time



Speed of Light Experiment - Schematic

Pulse laser: 1MHz repetition rate Pulse separation
Time separation between pulses: « .
1/pulse repetition rate =1 microsecond

)\

laser —

< »

photodetector




Speed of Light Experiment - Schematic

c=L/t

L: the round trip of the light
7: time for pulse to travel from laser output to detector

Experiment: measure a few pairs of (L, 1).

What will happen if L is too short?

Pulse separation
k =L What will happen if L is too long?

1 microsecond

c* 105 =300m




Error Analysis: Types of Uncertainties

e Systematic uncertainty: due to the faults of measurement instruments
or the techniques used in the expeirment.
e If you measure the length of a table with a steel tape which has a kink in it, you will obtain
a value which will appear to be too large by an amount equal to the loss in length resulting
from the kink. On the other hand, a calibration error in the steel tape itself—an incorrect
spacing of the markings—will produce a bias in one direction.

Systematic uncertainty decreases the accuracy of an experiment

 Random uncertainty: associated with unpredictable variations in the
experiment, or due to the deficiency in defining quantity be measured.

e Electrical noise—{rom nearby circuits or equipment, thermal effects, or imperfect connections
may cause random fluctuations in the magnitude of a quantity measured by a voltmeter.

e The length of a table may depend on which two points along the edge of the table the
measurement is made. The “length” is imprecisely defined in such a case.

Random uncertainty decreases the precision of an experiment



Error Analysis : Types of Uncertainties

These distinctions are illustrated in Fig. 1. You should avoid falling into the trap of thinking that
because the uncertainty of a measurement is always the same, then it is systematic. Systematic
uncertainty does not mean that the uncertainty is repeatable. What it means is that the uncertainty
involves physics that has not been accounted for in the analysis—two very different ideas.

.‘ . .o .
[ ]

Not precise Not precise Precise Precise
Not accurate Accurate Not accurate Accurate

Figure 1: A “bulls-eye” plot showing the distinction between precision and accuracy in a measure-
ment. The black dots represent data points taken in a measurement of a quantity whose true value
is at the center of the circles.



Error Analysis: Types of Uncertainties

Example: measurement of a period of pendulum

uncertainty

Use a clock that always runs fast. systematic

Repetitive measurements with starting and random
stopping watching at different points.

Repetitive measurements with starting and
stopping watching at different points.
However, one always starts the clock early
and stops the watch late.

Systematic + Random



Error Analysis: Mean, Standard Deviation, and Stand Deviation of the Mean

Example: Measure the length of the table

X1y X9y Xgyueny XNi1r XN
. Tt ro+...+xN v
I = - = — xI
A - Z -

How much of individual measurements are scattered from the mean?

Variances Standard deviation

For the case of equal uncertainties, an unbiased estimate ot o 1. the
variance of an individual measurement ot a sample of N measurements is (BR

p.11 and p.54)

1 5,
_a-\f'l_l 1

|

. . _ _ -
and the variance in the mean of a sample of N measurements, o, is (BR p.54)

I
— (@) .
N

Data Reduction and Error Analysis by Bevington and Robinson (BR)

A

o3



Error Analysis — Stating the results

There are two common ways to state the uncertainty of a result: in terms of a o, like the standard
deviation of the mean o,,. or in terms of a percent or fractional uncertainty, for which we reserve
the symbol € (“epsilon”). The relationship between € and o is as follows. Let the quantity of
interest be x, then, by definition,

€z = —. (4)

theresult: X + o



Error Analysis: Significant Digits the result: X + o

e The uncertainty ¢ in the final result should have, at most, 2 digits, and more commonly
1 digit. Remember, all uncertainty calculations are estimates; there is no such thing as an
“exact uncertainty”. Use this rule: if the first digit of o is 1, use 2 digits for sigma, e.g.,
o, =0.14 g, or 0, = 0.3 g, but not o, = 0.34 g.

The result itself should be stated to the same precision as o,. For example, you should write
9.5+0.3 g, or9.5240.14 g, but not 9.52 = 0.3 g.

o If 0 is especially large, you will lose significant digits. For example, suppose that multiple
measurements are made with an instrument that is precise to 3 digits, and mean value of
9.52 ¢ is found. but for other reasons the data points varied so that the standard deviation
of the mean was 2 g. The result would have to be reported as 9 +2 g.

If the measurement is so bad that o is larger than the value itself, you may have no significant
digits, but only know the order of magnitude. This case is most common when the quantity
in question is expected to be close to zero—such measurements may only give an upper or
lower bound on the quantity.

e [f o is calculated to be much smaller than the smallest digit of your measurement, then assume
that o is equal to “17 of the smallest digit. For example, if a measurement of a mass gives
exactly 9.52 g ten times, the result should be stated as m = 9.52 = 0.01 g. Thus you may

e

need to round your uncertainty up to the least significant digit in your measurement.



Error Analysis — Error Propagation

Propagation t;‘.'f Errors

When the quantity being measured, let's call it «, is some combination of
independent quantities which we will call x, v, z,--, u=u(x,y,z,), there is a simple
general rule for calculating the uncertainty in u#, &, given the

uncertainities D‘xto'},,o'z,---in X, 1,z This is

2
2 < 2

Two examples of this rule are of particular interest. The first is the

situation in which # is the sum or ditterence ot the quantities x, v, z,--, for
example, it = x + y — z. The partial derivatives ot 1 with respect to x, y and z are
either +1 or -1 so the expression tor the uncertainty ot u reduces to (BR p.42)
2 2 2 2
JH o O-.'{' + Jv]. + g:
The square ot the uncertainty of i is the sum ot the squares of the uncertainties of

X, 1, and z.



Error Analysis — Error Propagation

The second example is that in which u can be expressed as the product
Xy

&

and/or quotient of v, 1, and z, tor example, 1 = . It is a simple matter to show

—
"

that the general expression reduces in this case to (BR p. 43)

2 2 2 2
a a. g, o
( H) _( 1] T } +[ ]
L X y Z

i

i
the squares ot the fractional (or relative) uncertainties in x, v, and z.

, 1s the sum of

Thus the square of the fractional (or relative) uncertainly in u,



Table 1: Common formulas for propagating uncertainty. These equations can be combined in f
cases of more complicated formulas, or the student may work directly from equation (6).

Functional Form Formula Uncertainty formula
Product or Quotient f=zxyor f=x/y €f = .\/ €2 + eg
Sum or Difference f=r+yor f=x—y of = o2+ CTQ
Product of factors raised to powers f = 2"y" €f = .\/ m2e2 + n? t
Constant multipliers f=Kz (K =constant) oy = Ko,
Logarithmic functions [ =log,.(x) Tp =€y

f =logy(x) o = logg(e)er = 0.4343¢,
Exponential functions f=e" €f = 0y

f=10" er = log,(10)o, = 2.3030,

2 N2 2
2 At 2 Ol 2 Ol
ol =|— oo+ — oo+ — oo+
) s5= ay T2, 55



Speed of Light Experiment — Obtaining ¢

u=xy/z

o=t (g ) (g] (g) [g]
u — X + | — + | —
U X y VA

What is the error in the obtained value?

How does the error in each piece of the RHS contribute to the error in c?



Speed of Light Experiment - Schematic

Pulse laser: 1MHz repetition rate Pulse separation
Time separation between pulses: « .
1/pulse repetition rate =1 microsecond

)\

laser —

< »

photodetector

L=cCt



Example on Error Analysis

1. Error propagation and statistics

- with-an uncertainty of +- 2 cm. The transit time "measuredtobe&Bmsmthanumertamtyof 0.1

ms. What is the speed of sound for the gas in the tube and the uncertainty in its measurement?

Table 1: Common formulas for propagating uncertainty. These equations can be combined in t
cases of more complicated formulas, or the student may work directly from equation (6).

Functional Form Formula Uncertainty formula
Product or Quotient f=zyor f=zx/y €f = \/ €2 + 63
Sum or Difference f=x+yor f=xr—y of = o2+ UQ
Product of factors raised to powers f = a2"y" €f = \/ m2e2 + n2e 2
Constant multipliers f=Kz (K =constant) o7 = Ko,
Logarithmic functions [ =log,(x) Tp =€

f =logy(x) of = logig(e)er = 0.4343¢,
Exponential functions f=e" €f = 0y

f=10" ef = log,(10)o; = 2.3030,



Example on Error Analysis

1. Error propagation and statistics

(a) (7 pts) An experiment to meagure the speed of sound in a gas employs a tube of fixed length with a
source at one end and a detector at the other. One end of the tube is measured to be at 8.13 m

L
V== L=d,—d, =8.13—2.50 =5.63m 7 =8.8ms
T
2 2
M_&gg sm/s O =\/O'd1 +oy o. =0.1ms
8.8x10°°

2 2
Ov _ (ﬂj J{ij =0.012 o, =1.68m/s
V L T

V = (640+8)m/s



Example on Error Analysis

v L =

' (b) (3 pts) After making 10 measurements of the of light, an experimenter determined that the
uncertainty could be described as entirely statistical, with ; an uncertainty inthe meanof - 3,0x 10° em/s. |How
many measurements would it take to give a final uncertainty in the mean of 1.0 x 10® cm/s?

How much of individual measurements are scattered from the mean?
Variances Standard deviation

_ e . . -2
For the case of equal uncertainties, an unbiased estimate of &, the
variance of an individual measurement ot a sample of N measurements is (BR

p.11 and p.54)

9 l % — 2
[0 — X —X) -
Ny

. . _ _ -
and the variance in the mean of a sample of N measurements, o, is (BR p.54)

1
N

Data Reduction and Error Analysis by Bevington and Robinson (BR).

O-?’!

A

o3



v L =

" (b) (3 pts) After making 10 measurements of the of light, an experimenter determined that the
uncertainty could be described as entirely statistical, with ; an uncertainty inthe meanof - 3,0 % 10° em/s. |How

many measurements would it take to give a final uncertainty in the mean of 1.0 x 10® cm/s?

oi- Lot 3x10%cm/s = ——
10

1x10%cm/ s = ——

JN
= ﬁ N=90



