
Digital electronics and Boolean Algebra
Additional notes and exercises

August 15, 2012

1 Background

These notes contain additional information and exercises (not assessed) covering intro-
ductory material on digital electronics and boolean algebra. If you haven’t looked at
lecture notes #6 and are not familiar with all the digital gates associated truth tables
then you should go and read that now.

Logic gates are the building blocks of digital electronics. They are ultimately made
with transistor circuits, but in the study of digital electronics we can generally treat them
as ‘black boxes’. Combining multiple logic gates together in a circuit allows complex
behaviors to be realized. When digital signals are used to represent binary numbers,
circuits composed of logic gates can perform mathematical operations. Ultimately, the
CPU in your computer does this on a massive scale.

The mathematical tool we use for analyzing logic gate circuits is boolean algebra. It
is a very usefull tool, allowing us to simplify down complex circuits and to find how to
make a gate of a particular type by combining gates of other types. Boolean algebra
take a little practice to get used to but is ultimately no more difficult than elementary
algebra.

1



2 The rules

We start with a series of identities. These should be reasonably obvious once you adjust
to thinking of the · and + operators in the boolean algebra context.

A ·A = A

A · 1 = A

A · 0 = 0

A + A = A

A + 1 = 1

A + 0 = A

(1)

Similarly, the rules for commutation, association and distribution apply to the symbols
used in boolean algebra in the same way as they apply to the symbols for addition and
multiplication, for example commutation:

A + B = B + A

A ·B = B ·A (2)

association:

A + (B + C) = (A + B) + C

A · (B · C) = (A ·B) · C (3)

and distribution:

A + (B · C) = (A + B) · (A + C)

A · (B + C) = A ·B + A · C (4)

Redundancy is an additional rule, which can be written in words: In a Boolean
expression containing a sum of products, a product that contains all the
factors of another product is redundant. For example:

A ·B + A ·B · C + A ·B ·D = A ·B. (5)

In this example, the last two or terms are made redundant by the first term. If A and
B are true then the expression will be true regardless of the value of C or D.

De Morgan’s theorem is very useful for simplifying expressions. It is often applied to
remove a negation bar over a large number or terms. Formally it states:

A ·B · C . . .N = Ā + B̄ + C̄ + . . . N̄ (6)

2



or
A + B + C + . . . N = Ā · B̄ · C̄ . . . N̄ (7)

In practice to apply it the steps you go through are:

1. AND is changed to OR and OR is changed to AND

2. Each variable is replaced by its complement

3. The logical state of the entire expression is replaced by the complementary value.

Note that a useful identity which follows from De Morgans theorem is

¯̄A = A (8)

3 Examples

3.1 Example 1

Consider the circuit shown in Figure 1. Suppose we want to see if we can simplify this.
An expression for the output can be written:

A

B

Out

Figure 1: Circuit to simplify

A + (A ·B) (9)

which we can begin to simplify. As A · 1 = A

(A · 1) + (A ·B) (10)

because from the distributive law (recall A ·B + A · C = A · (B + C))

A · (1 + B) (11)

and B is redundant so we just have

A · 1 = A (12)

so in this example we don’t actually need any gates in the circuit.

3



3.2 Example 2

Consider the following expression which we want to realize in a digital circuit:

C̄(A + B) + C(Ā + B̄) + AB̄C + ABC (13)

first we note that B is redundant in the last two terms

C̄(A + B) + C(Ā + B̄) + AC (14)

to simplify the negated part of the first part of the expression we can apply De Morgans
theorem.

C̄(Ā · B̄) + C(Ā + B̄) + AC (15)

expanding
C̄B̄Ā + CĀ + CB̄ + AC (16)

which can also be written
C̄B̄Ā + C(Ā + A) + CB̄ (17)

the identity can be removed and the expression written

C̄B̄Ā + (B̄ + 1)C (18)

and since B̄ + 1 = 1 we have
C̄B̄Ā + C (19)

and the C̄ term is redundant here so

ĀB̄ + C (20)

represents our final solution.

We could go ahead and implement this expression directly, as shown in Figure 2.
However, in practice this is probably not an ideal solution. Gates tend to come packaged
with several of the same type on the same chip and it is usually more important to
minimize the number of chips than the number of logical gates.

C

A

B

Out

Figure 2: Direct implementation of Equation 20

Suppose we only have NOR gates available. Applying De Morgan’s theorem we can
replace the left most gates with a single NOR gate. We can also make an OR gate out of
one NOR gate followed by another configured as an inverter. This is shown in Figure 3.

Note that NOR and NAND gates are known as universal gates as it is possible to use
combinations of either to represent any logical operation.

4



C

A

B

Figure 3: NOR implementation of Equation 20

4 Exercises

1. Convert the following decimal numbers into 8-bit binary representation : 12, 15,
65

2. Simplify A · (B + A ·B)

3. Simplify Ā · (B + A ·B)

4. Simplify A + (B · (Ā + C) + C) + A ·B · (D̄ + Ē)

5. Simplify (A + B · Ā) + (C + D + E · C̄)

6. Starting from a truth table for the XOR expression, show that A⊕B = Ā·B+A·B̄.
Try to represent this as a circuit containing only NAND gates.

7. Determine the Boolean algebra expression associated with the truth table below
using each statement on the truth table that is TRUE. Minimize the resultant
expression.

A B C Q

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

5


	Background
	The rules
	Examples
	Example 1
	Example 2

	Exercises

