
Physics 335

Lab 5 – Introduction to Microcontrollers: The PIC16F88

Introduction

From now through the end of the quarter, we’ll be working with microcontrollers. This will without
a doubt be an incomplete introduction, by necessity. There are so many flavors of microcontrollers
and so very many ways to use them and program them that we’ll just scratch the surface. Still,
we hope that it will give you enough of an introduction that you add microcontrollers as a tool in
your electronics toolbox that you won’t be afraid to use where it’s appropriate. They should be
considered any time your circuits needs some level of intelligence or decision making, but when you
don’t want to go through the trouble or expense of making a full-blown computer application to
do the job.

We’ve deliberately chosen a very simple microcontroller for our labs. It’s one of the simplest on the
market, actually, which is both a benefit and curse, depending on what you’re trying to do. But
its simplicity will allow you to get your feet wet and (hopefully) get a few programs to work and
learn about the underlying hardware.

The chip we’ve chosen to start with is made by MicroChip. We will be delving into the hardware of
this chip, so have chosen to have you learn the assembly language of the microcontroller. This will
force you to get intimate with the registers and other chip level functions on the chip. There are
higher level programming languages that can be used with this chip—C and other variants—and
you may choose to use them if you use these chips outside of class. But we’ll use assembly lanugage
and machine code so you can easily see the relation between your code and the actual bits in the
chip’s memory.

This chip is simple. But simple is relative. It has a nice, short, 200 or so page datasheet. Yes, that’s
short for a microcontroller. That’s just for the chip. The programmer and development boards
also have a couple extra hundred pages of documentation, provided on the course web site if you so
choose to puruse them. You probably won’t read the whole thing, and rare does it seem people do,
but you’ll need to read and be familiar with the parts you’ll need to do your specific programming
tasks. We’ll try to steer you in the right direction in most cases.

By now you’ve had an introduction to the microcontroller in class. You’ll recall it’s a Harvard
Architecture chip, meaning the program and register memories are separate. A block diagram of
the chip is shown below.

1



Note the following:

• There are TWO busses - A data bus (8 bits wide) and a program bus (14 bits wide).

• The series of checked boxes on the right labeled PORTA and PORTB represent connections
to the outside world.

• The is no direct connection between the program bus and the data bus. So getting a pro-
gram on to the chip and into the program memory requires a few tricks. Fortunately the
manufacturer has solved iths problem for us.

• There are a number of other “things” hanging on the data bus, a few of which we’ll get into
in future labs. These include A/D, counters and other goodies.

The set of opcodes for our chip, or instructions that it can do is rudimentary. Under 40 in all is all
you’ll need to understand. In practice, you will rarely use them all.

Don’t be intimidated by something that looks this complicated at a first glance. After you spend
some time with it, you will get comfortable with it, and you can start to use your imagination to
make it solve problems in the lab. But enough babble—let’s start using the chip.

2



5-1 Introduction to the Assembler

We’ll be using a programming suite provided by MicroChip to develop our code. It has been
pre installed on your lab computers. Log in and start it up by clicking on the MPLAB icon,
MPLAB X IDE v2.05, on your desktop.

Your code will be organized in a project. Each project consists of a number of files of source
code, that YOU write, along with a few extra files that assist the compiler to understand the
chip and it’s registers. We’ll use just one to start; A file that defines the registers in the chip
with easy to remember names. OK, next let’s just dive right in and start a new project.

(a) Goto File:NewProject. Select MicrochipEmbedded:Standalone Project > Next

(b) Select Device:Family:MidRange 8-bit MCU:PIC16F88 (our chip) > Next

(c) HarwareTools:PICkit3 SN:(A serial number unique to your machine should be shown).
Select it

(d) Select Compiler mpasm (highlight) > Next

(e) SelectProjectNameAndFolder: Give it simple name unique to you with no special charc-
ters, spaces, etc. Maybe something like JohnProject1. Remember where the folder is
that you store it in.

(f) Click Finish

On the left side, you’ll see what’s in your project: a sort of file explorer of the files associated
with your particular programming task. There will usually be at least a couple files to start
off any programming task—A source code file, which for consistency should end with .asm

(meaning “assembler source file”), and a file to assist in definitions specific to your particular
chip

3



First a word about memory in the PIC. There are two types of memory: Program and Data
memory. The program memory stores your program and it’s not (typically) changed from
the time you program the PIC. The Data memory is where you store all your variable and
other transitory information that your program needs to interface with the world in the way
you want it to. The data amemory is subdivided further into Special Function Registers
(SFRs) and General Purpose Registers (GPRs). General purpose registers are just plain old
memory locations. You can use them any time you need to store data and that’s all they do.
The Special Function Registers actually change the way the PIC executes its code. They’re
outlined in the datasheet and they are more or less named according to processor or peripheral
functions they modify or are modified by.

TAKE SPECIAL CARE THAT YOU ALWAYS KNOW WHICH REGISTERS
YOU’RE WRITING TO OR READING FROM. IF YOU USE A SPECIAL
FUNCTION REGISTER TO STORE PLAIN OLD DATA FROM YOUR PRO-
GRAM, IT MAY CAUSE YOUR PROGRAM TO ACT IN A VERY PECU-
LIAR WAY, AND IT CAN BE A BUGGER TO DEBUG.

First, let’s be sure you have a good, clean, and unadulterated copy of the file that defines the
registers of the chip. Download the file called p16f88.inc from the course website. Save it to
your project directory. You need to tell the compiler that you want to use the file as a part
of the project. Right click on “Header Files” – Then “Add existing item”. Find your file and
select it (Leave “store path as relative”).

You should see the file populate the tree under header files. Double click it to open it.

The purpose of this file is nothing magical. Mainly it is a list of “equates” (so called) as
indicated by the assembler directive EQU. These simply create a list of easy (or easier) to
remember names that are associated with various numbers (all in hex). For example, you may
see STATUS EQU H’0003’. What this does is allow you to write STATUS instead of H’0003’
when you want to refer to the address of the status byte. A listing of the organization of the
registers in the 16F88 chip (taken from the data sheet) is shown below.

4



One of the most important special function registers, (or places in data memory) is the STATUS
register. This gives some basic information about how a particular instruction executed and
has a number of bits that can be set or cleared based on the results of an instruction. When
you use an equate you can tell your program to tell it to load or modify STATUS instead of
“memory location 3.” You can actually refer to it either way. However, remember: if you

want to refer to any of these registers by name it’s critical that you include this file as a part

of your project. otherwise the assembler doesn’t know what you mean when you tell it to read

the STATUS register, for example.

5



5-2 Compiling and Using the Debugger

Ok, let’s start by looking at a simple program to get a feeling for how this all comes together.
This program won’t do anything useful; we’re just trying to get you to become a bit more
familiar with the tools you’ll need to actually do the useful stuff.

(A) Assemble the Program

Download the file named PIC16F88 template1.asm from the course website and save it to
your project directory. Right click on “Source Files” and add this to the tree. Then save it
as another file with a simple name (without blanks or special characters) and ending with an
.asm extension.

This template includes many directives for the assembler that need not concern you at this
moment. Later you may dig into the structure of the file.

We’ll start by looking at a few basic instructions, what they do, and how we verify that the
program is doing what we think it’s doing in order that we can make the processor do what
we expect it to do. This latter step of debugging is sometimes challenging.

Carefully enter the following code into your assembler editor right after the comment
**** YOUR CODE GOES HERE ****. [Note: We recommend that you type the code in. Some
people choose to cut and paste, but if you do be aware that sometimes the formatting of the
text can get a little strange. We’ve also noticed that the single quote characters don’t copy
over correctly. Use the single quote by your enter key (if it changes to another such as left
quote/accent grave, you’ll need to change it back).]

; Main program ----------------------------------------------------

Start

; **** YOUR CODE GOES HERE ****

MOVLW b’00001111’

MOVWF H’20’

CLRF H’21’

MOVLW b’11001100’

MOVWF H’21’

LoopPoint RRF H’20’,F

INCF H’21’,F

GOTO LoopPoint

Finish

END ; End of program

Save all files in the project.

Now, what does the above mean? Don’t worry about about the stuff at the top of your file
just yet. They are various directives for the assembler that converts the language to machine
code (the actual contents of the program memory). We’ll come back to it later. Let’s start
with the code at the label for Main Program.

We use several instructions in this simple program. A LOT of instructions are devoted to to
moving information from one place to another in the processor, so we’ll start with some of
those.

6



Our most important register is the working register (W). Pretty much all the data we use
will move through this register. In fact, there’s no way to move data directly from one
memory location to another without using the W register in the middle. So in our first
instruction (MOVLW) we execute “move a ‘literal’ value” (a number written right into our
program memory/code) into the W register. The W register is probably the most important
register in the entire processor: it is used in almost every instruction, either as a source
or a destination for the result of an operation. (As a register, however, it is not directly
addressable, like say, the STATUS register.

You’ll need to reference the data sheet throughout the remainder of your time working with
the PIC controllers. Let’s look up the MOVLW instruction.

Below is the Instruction Set from the Pic16F88 Datasheet. Under “Literal and Control
Operations” find MOVLW. You’ll find a brief description of the function (“Move literal to W”)
and its numerical opcode. Also in the datasheet is a detailed summary of each instruction
that gives the syntax, the allowable values for the operands, which STATUS bits if any are
affected, and a description of what the intruction does.

7



The next instruction is MOVWF, which moves the new value of W into a memory location,
in this case memory location 20h. Find the instruction and study it’s description until you
understand it. If you look at the data memory map in the datsheet (or earlier in this lab
writeup), you’ll find it’s the first of the “General Purpose Registers” in “Bank 0” that can be
used to store program data.

(B) Compile and Debug

Next, it is time to compile this program and watch how it executes. But first a little house-
keeping: we’ll need to tell the programmer/debugger to power the chip from the PICkit
instead of from an external power supply. Right-click on your project title. On the drop-
down menu select Set Configuration > Customize. Under Conf: highlight PICkit3. A
dialog box will open. Then under Option Categories select Power, and check the box next
to Power target circuit from PICkit3 and finally select a Voltage Level of 5.0. Click
OK to close.

Compile the program as folows. Under Debug, select Debug Main Project. You may see
a warning about powering the chip that may cause damage that sounds rather ominous, but
just make sure the PICkit is plugged into the 2nd slot of the PicDem board and all will be
well—accept the warning.

Allow the device to program. In the “output” window ou may see various messages about
“firmware updates” and the like; give it a little time. Once you get a message of “running,”
pause the program by clicking the orange “pause button” on the toolbar at the top (see
below). Then hit the blue circle reset button. This will hold the processor in a reset state for
the moment. Now let’s watch how this all works, in slow motion.

Assume we’re trying to debug a pesky problem in our program and we can’t figure out what
we did wrong. We might want to look at what’s going on inside the process and watch the
memory locations as the are operated on by the different instructions. How do we do that?

First note you’ll see your first line of code (GOTO Init) highlighted. Click on the Vari-

ables window below to enter things you want to watch. (if you accidentally closed it, it
can be found and reopened under the “window:debugging” drop down). Double click on
<Enter New watch> and enter the following watch points, relavent to our program.

0x20

0x21

STATUS

Now let’s step through the program. See the buttons above for the Step Over button. This
button will let you single step through the program but considers any function calls as a

8



single function. Press it a few times and watch how it walks you slowly through the program.
The watch window highlights any of your watches that change value in red. Special function
registers often even can be opened up further to watch individual bits by name. For example,
watch what happens at STATUS<2> as the CLRF function is executed. Not surprisingly, the
0x21 register is set to zero, and the zero (Z) flag (Bit 2) of the STATUS register is set.

Also notice the two blue-bordered boxes next to the tool bar that contain cryptic messages
similar to PC: 0xE and z dc C : W:0x0 : bank 0. The first of these shows the “program
counter”. You will notice that it advances at each step (usually by 1). It shows the current
location in program memory being used by the program. The second box shows the STATUS

bits for carry (C), digit carry (DC), and zero (Z). When these are in upper case, the bit is set;
in lower case, the bit is clear. After this is the contents of the W register (in hex). Finally
the current bank of data memory being accessed is shown.

Look up the remaining instructions used in this program and verify that you can understand
what they’re doing by reading about them in the documentation and watching what they do
as you step through the program.

5-3 Interfacing Ports

OK, fine, and good: we can step through a program, but the chip is not doing anything
except cycling through its own internal program. How do I make it something useful? Enter
the “Interfacing Ports.”

All of the pins on the PIC are multipurpose, except for the power pins VDD (pin 14, 5.0 V)
and VSS (pin 5, ground). The pins can be used in a number of software configurable ways,
but we’ll start with the easiest one—using them as digital inputs or outputs. When they are
used in this way, they are referred to as “Port A” and “Port B.”

Certain special function registers are very important for controlling their function:

PORTA and PORTB The Special Function Registers located at 0x05 and 0x06. Eight pins are
associated with each digital port. They can be used for either input or output and each
pin can be set individually. If set for output, it is especially important that there be no
“line contention” (other voltage sources connected to the same wire as the active-out
pin). When using a PORT as an input, one reads the associated register; when using it
as an output, one writes to the associated register.

TRISA and TRISB These registers located at 0x85 and 0x86 control the “tri-state” buffer of
the ports, and determine whether the port is an input or an output. In other words,
for a pin to act as a digital output, one must enable the tri-state buffer by setting the
appropriate TRIS digit and then write to the appropriate PORT register digit. Setting a
value of 1 to a TRIS bit makes the corresponding pin an input; clearing the bit (setting
to 0) makes it an output. So setting TRISB to 0x0F makes pins 6, 7, 8, and 9 (RB0
through RB3) into digital inputs and pins 10, 11, 12, and 13 (RB4 through RB7) into
digital outputs.

ANSEL This register determines whether the pins associated with Port A are digital inputs
or analog inputs. The microcontroller has an onboard A/D converter; when it is used
the associated pins must be turned on for this function. By clearing ANSEL one set the
inputs to be of digital type.

9



This is also a good time to talk a little more about the STATUS register. As you have found,
The STATUS register is automatically updated when certain instructions are executed. Here’s
the layout of the STATUS register, from the PIC 16F88 Datasheet

You’ve already met a couple of the bits - For example the Zero bit (Z) or STATUS<2>. But
another set of really important bits in the STATUS register are the “bank select” bits, RP0
and RP1, also designated STATUS<5> and STATUS<6>.

Look again at the data memory map. We’ll remind you that they are a combination of
General Purpose and Special Purpose Registers. You’ll note that this memory is divided into
4 banks. The structure of the PIC’s opcode allows you to set the lower 7 bits of the address.
This allows you to address 128 bytes of data memory space. To access more data memory
space, the upper two bits are set by setting or clearing the bank select bits which reside in
the STATUS register.

We need to use the RP0 an RP1 bits to address the SFRs TRISA, TRISB, and ANSEL because
they reside in memory locations above 0x7F.

The following code sets up PORTB<0..5> as an output and PORTA<0> as an input. A switch
allows us to interact with the processor. When we switch the switch, we change from one set
of distictive output bits on Port B to another

Note we do not use Port B bits 6 and 7 at this time because these pins are in use by the
debugger. They are available for use, but not if we compile the program in debugging mode
as they’re used to control the debug execution state and stepping.

10



Wire up the following circuit. The LEDs are all on one little “stick.” Look for a thick white
DIP-socket chip with little orange rectangles all in a row.

Now, open up a new project, load in the template, and add the following code in the Main

Program section:

; Main Program ------------------------------------------------------------

Start

BSF STATUS, RP0 ; Go to bank 1

MOVLW b’00000000’

MOVWF TRISB ; Set Port B as Outputs

MOVWF ANSEL ; ANSEL = 0x00 --> inputs are digital

MOVLW b’11111111’

MOVWF TRISA ; set Port A as input

BCF STATUS, RP0 ; Go to back to bank 0

MainLoop BTFSS PORTA, 0 ; Look at PORTA<0>

GOTO PB1Pushed ; branch if lo, skip to next if hi

MOVLW b’00111101’

MOVWF PORTB ; Output a distinctive LED pattern

GOTO MainLoop ; loop back

PB1Pushed MOVLW b’11000010’

MOVWF PORTB ; Outut a contrasting pattern

GOTO MainLoop ; And go back to the Main Loop

Finish

end ; end of program

11



Compile and run it under Debug Mode as you did before, although there is no need to single-
step through the code unless you have a problem. You will know it works when you see the
LED pattern change when you flip the switch.

5-4 Your Own Code

Finally, you will use your own creative imagination to write a program that extends this port
output functionality. The goal is to light up an array of LEDs sequentially. Heres a general
outline:

(a) Initialize PortB and TRISB appropriately.

(b) Turn on one LED.

(c) Pause an appropriate period of time.

(d) Change the value on PORTB to turn off the first LED and turn on the next one over.

(e) Repeat endlessly returning to the first LED at the end of when you run out of bits on
the port.

Use the template and examples above to save time. A few things to think about:

• Be sure your pause is long enough, but not too long.

• Do not assume that read and write functions can be accomplished equivalently on output
ports.

• You might find the rotate instructions RRF and RLF useful.

You may use the following delay code, or feel free to write your own. You should try to
understand it in any case.

; Entering delay loop

Delay MOVLW H’FF’

MOVWF H’30

Loop MOVLW H’FF’

MOVWF H’31’

SubLoop DECFSZ H’31’

GOTO SubLoop

DECFSZ H’30’

GOTO Loop

; Leaving delay loop

If you complete this, add functionality to have the switch control the direction that the light
array rotates.

Turn in source code and demonstrate a functional controller by the end of class. Your TA
will check off that your code functions as advertised.

12


